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1 Introduction

Count data are increasingly often found useful for empirical studies in many fields of

economics. In regional economic settings with small areas and/or when counts (or

frequencies) for other reasons are small it is particularly important to account for some

of the key features of count data. Notably, counts are integer-valued, non-negative and

in most models for counts, heteroskedasticity is an important feature.

In this paper we depart from some widely used linear spatial econometric models

(e.g., Anselin, 1988; Anselin, Florax and Rey, 2004) and introduce and discuss specifica-

tions of spatial econometric models that account for count data features. The emphasis

is on models that exhibit either or both time and spatial autoregressive lags.

Poisson and negative binomial regressions are leading examples of models that ac-

count for integer-valued, non-negative and heteroskedastic count data (e.g., Cameron

and Trivedi, 1998; Winkelmann, 2008). The latter regression accounts for the empirically

frequently found over-dispersion, i.e., that the sample variance is larger than the sample

mean. The regressions contain observed heterogeneity possibly both in terms of cur-

rent and lagged exogenous variables as well as spatial factors. Count data models may

also be specified to account for unobserved heterogeneity to reflect any time and space

dependencies (e.g., Zeger, 1988; Zhang, 2002; Sengupta and Cressie, 2013).

Another much studied count data model class stems from the independent works

of McKenzie (1985) and Al-Osh and Alzaid (1987). They introduced and studied the

integer-valued autoregressive model of order one (INAR(1)). A survey of the early liter-

ature offering, e.g., various extensions is given by McKenzie (2003) and partial textbook

treatments are offered in, e.g., Cameron and Trivedi (1998, 2005). The INAR(1) model is

written in the manner of a conventional autoregressive model of order one, except that

a thinning operation here replaces multiplying the lagged endogenous variable by a pa-

rameter, see below. Otherwise integer-valued counts cannot be guaranteed. Still, INAR

models share some basic properties with the conventional linear time series models.

In this paper a multivariate INAR(1) model (e.g., McKenzie, 1988; Brännäs, 1995;

Berglund and Brännäs, 1996; Pedeli and Karlis, 2013) serves as a platform for developing

time dynamic model extensions appropriate for spatial count data. We view the spatial
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configuration as given and constant across time. The incorporation of spatial effects

through a weight matrix necessitates a novel treatment and it is to be done through

the model parameters. We emphasise model characteristics and discuss some model

properties in terms of low order moments. For robustness and technical reasons full

distributional results are not given and therefore least squares and related estimators

are briefly discussed but not the maximum likelihood estimator.

Section 2 develops the count data based spatial econometric models and gives some

of their properties. In Section 3 we discuss approaches to the estimation of the unknown

model parameters. In Appendix A a new approach to obtaining inversion results for

thinning operations is introduced.

2 Model Specifications

Count data have some particular features that need to be recognised for the coherency

between data generating processes (DGP) and spatial econometric models. Counts are

obviously integer-valued and greater than or equal to zero. For large counts frequent

use is made of normal approximations and then conventional models may be directly

adopted. For smaller counts this may be a risky path to pursue as, e.g., forecasts may

come out with an incorrect sign. In addition, by recognising key features of the DGP

interpretational benefits may be brought to the empirical modelling exercise.

We start by giving some key results for the basic multivariate count data AR(1)

model, before introducing spatial effects and exogenous variables in this setup. Later

we consider the simultaneous and autoregressive equations model for count data as well

as discuss some of its special cases.

2.1 The Multivariate AR(1)

The first order and M-variate count (integer-valued) data autoregressive model of order

one (INAR(1)) can be written as

yt = A ◦ yt−1 + εt, t = 2, . . . , T. (1)
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The count data AR(1) model in (1) is in the spatial context seen as having the elements of

the yt = (y1t, . . . , yMt)
′ vector represent the same basic variable but with measurements

representing the M different spatial units, such as municipalities or regions. The M×M

matrix A has elements αij, and the symbol ◦ represents binomial thinning which replaces

standard multiplication in order for the model to generate integer-valued outcomes. For

instance, for a scalar integer-valued random y variable the thinning operation is defined

as α ◦ y = ∑
y
i=1 ui, where {ui}

y
i=1 is an iid sequence of 0 − 1 random variables and

Pr(ui) = α. It follows that the integer-valued α ◦ y ∈ [0, y] and that for a given y, α ◦ y

is binomially distributed with conditional mean αy and conditional variance α(1− α)y.

This motivates the label binomial thinning. A few useful results for binomial thinning

operations are given in Appendix A.

Hence, the parameters in the A matrix are interpreted as probabilities, so that αij ∈

[0, 1], for all relevant i, j. Thinning operations are performed element by element, such

that for the ith equation we get from (1)

yit =
M

∑
j=1

αij ◦ yj,t−1 + εit. (2)

Here, the different thinning operations are assumed independent and independent of

the disturbance term εt, for all t.1 For the unobservable count data random εt vector we

have that εt ≥ 0 and we assume that E(εt) = λ > 0 and E(εtε
′
s) = Σ, for t = s, and

equal to 0 when t 6= s. The εt sequence is throughout assumed serially uncorrelated. In

the important and parsimoniously parameterised special case of independently Poisson

distributed εit, i = 1, . . . , M, we have diag(Σ) = λ and zeroes elsewhere in Σ. The

Poisson case is an example of self-decomposability (Steutel and van Harn, 1979), while,

e.g., the binomial is not self-decomposable.

Consider as an example, the population sizes of, for instance, individuals or firms,

in the M regions that constitute the regional yt vector. Then the diagonal αii elements

reflect survival probabilities in the regions, and hence 1− αii is the probability of em-

igration from the ith region. An off-diagonal αij element corresponds to a migration

1Brännäs and Hellström (2001) consider the consequences of relaxing such independence assumptions

in the univariate INAR(1) model. Most often only second and higher order moments will change when

such assumptions are varied.
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probability from a region j to region i. Births and immigration from any other (outside)

regions are caught by the random εit term. If deaths are to be included, as say, an arti-

ficial region M + 1 then αi,M+1 = 0 while αM+1,j ≥ 0, for all i and j. In fact, the model

corresponds to the Markov model for open systems of Bartholomew (1982, ch 3). In

this example it may be natural to enforce a column sum condition, i.e. ∑M
j=1 αij = 1 and

∑M+1
j=1 αij = 1 if deaths are included. In other contexts such as in studying the number of

births across regions, row restrictions of this type appears less natural. Interpretations of

the type illustrated here are not automatically provided by conventional VAR modelling

exercises.

For stationarity we require that the largest eigenvalue of the positive A matrix is

smaller than one. If all off-diagonal elements αij = 0 then the model in (1) is stationary

if maxi (αii) < 1. Note also that for this count data model specification with εit ≥ 0,

non-stationarity can be rejected if for any time series i there is, at least, one negative

change, i.e., yit − yit−1 < 0, for all t. Obviously, stationarity only arises if there is a long

history preceding the first observation at time t = 1.

Given stationarity the first two conditional and unconditional moments can be ob-

tained as

E(yt|Yt−1) = Ayt−1 + λ (3)

E(yt) = (I−A)−1λ (4)

V(yt|Yt−1) = Ht−1 + Σ (5)

V(yt) = AV(yt)A′ + H∗ + Σ, (6)

where Yt−1 is the history of yt up through time t− 1. The Ht−1 matrix is diagonal with

diag Ht−1 = (∑M
j=1 αij(1 − αij)yjt−1, i = 1, . . . , M). Therefore, the diagonal matrix H∗

has diag H∗ = (∑M
j=1 αij(1− αij)E(yjt), i = 1, . . . , M) and it is time invariant. The diago-

nal elements of Ht−1 in (5) highlights the autoregressive conditional heteroskedasticity

(ARCH) property of the multivariate count data AR(1) model.

Various special cases of (1) have previously been considered in the literature. When

A = αI, i.e. the matrix is diagonal with a scalar parameter, and there is no dependence

between the elements in the εt vector and all elements have the same first two moments,

so that, e.g., λ = λ01M, with λ0 an unknown scalar parameter and 1M = (1, . . . , 1)′, and
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Σ = σ2IM, the model simplifies to a replicated INAR(1) (e.g., Silva, 2005). With also

A = 0 we then simply have M independent variables. Panel data applications of the

full model with random effects are discussed by Brännäs (1995), Blundell, Griffith and

Windmeijer (2002) and others.

In a case of a small number of spatial units M but with long time series, i.e. T is large,

the off-diagonal elements of the A matrix can empirically be estimated and interpreted

as representing spatial effects. For the more conventional situation of a large M and a

small T we note that catching spatial effects may be empirically difficult due to the short

time series. Specifying a model for αij in terms of exogenous variables and/or spatial

effects may reduce the number of unknown parameters and make estimation feasible.

The model in (1) may be extended in, at least, two important directions. It is obvi-

ously possible to incorporate higher order lags of yt as well as to incorporate simulta-

neous effects (cf. Brännäs, 2013). Importantly, exogenous variables potentially reflecting

spatial effects and with or without lags, may be included through the parameters of the

model. For αij we may adopt, say, a logistic specification (cf. Brännäs, 1995) to get

αij,t = 1/(1 + exp(x′ij,tθα)) ∈ [0, 1], (7)

with θα a kα dimensional parameter vector. The exogenous variables are collected into

the vector xij,t. Since αij,t reflects a transition in the time interval (t− 1, t], xij,t is most

often best taken to reflect what happened in previous time intervals, i.e. (t − 2, t − 1]

and before. For the λ vector we may let the elements be of exponential forms, so that

λit = exp(z′itθλ) > 0, with θλ a kλ × 1 parameter vector.

Corresponding to (1) we may then write the model as

yt = At ◦ yt−1 + εt, t = 2, . . . , T, (8)

where E(εt) = λt. Such specifications may well reduce the number of unknown pa-

rameters in A and λ rather than to increase the number. Other ways of incorporating

exogenous variables cannot in a general way guarantee a DGP that gives an endogenous

and integer-valued yt variable vector.
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2.2 The Spatial AR(1)

In the spatial econometrics literature (e.g., Anselin, Florax and Rey, 2004) the spatial

distance between observable units is an important ingredient. In the current model

framework the spatial effects are best implicitly incorporated through the A matrix and

the λ vector.

The spatial economics literature makes frequent use of a weight matrix W, that may

be time-varying, to reflect spatial distance and it can, e.g., have elements in the form of

a simple gravity model Wij = Mi Mj/Dij or the even simpler Wij = 1/D2
ij, for i 6= j and

Wii = 0, for all i. Here, Mi represents a measure of mass for unit i, and Dij is a measure

of distance between units i and j. The Mi and Mj may be measured by wealth or some

other economic size variable and will therefore likely be time-varying, implying time-

dependence also in Wij,t. As the distance increases Wij will typically become smaller

and this then implies a smaller spatial correlation.

Since, the A matrix in (1) contains probabilities a logistic specification may be use-

fully applied, cf. (7). Thanks to symmetry

αij = 1/(1 + exp(α0 + α1Wij)) = αji, i 6= j (9)

is true also in the presence of time-dependence. The effect of this simple parametrisa-

tion is to reduce M2 potentially unknown αij to two unknown parameters, α0 and α1.

When α1 = 0 there is no spatial effect. If W is of some general form that contains un-

known parameters we could instead write αij = 1/(1 + exp(α0 + Wij(α1))). If W by an

appropriate restriction on the parameter vector α1 has no impact on αij it implies that

αii = 1/(1+ exp(α0)) is constant across i and j, and then indicative of a constant lag one

time dependence in yit, i = 1, . . . , M. If we were to also include explanatory variables

in αij the symmetry is likely to be lost. Obviously, the λ vector may also be specified to

reflect spatial effects in some analogous manner.

A direct use of the more conventional spatial econometrics analogues, such as, AW ◦

y or A ◦Wy are less suitable than the illustrated A(W) ◦ y specification if we wish to

adhere to the count data interpretation of yt. The reasons are that the elements of AW

are not necessarily in unit intervals as required for probabilities, and Wy is not likely to

have integer-valued elements.
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Hence, we may write the preferred model representation as

yit = αii ◦ yit−1 +
M

∑
j=1,i 6=j

αij(W) ◦ yj,t−1 + εit =
M

∑
j=1

αij(W) ◦ yj,t−1 + εit

or compactly as

yt = A(W) ◦ yt−1 + εt. (10)

For small numbers of spatial units or when the spatial dependence is limited to the

nearest neighbours it is not always necessary to include distance explicitly, but to instead

use the αij parameters directly. For instance, Brännäs and Brännäs (1998) used a binomial

INAR(1) model for fish visits in a closed experimental tank system, and Boudreault

and Charpentier (2011) studied earthquake counts. Ghodsi, Shitan and Bakouch (2012)

studied the moment properties of a space-time INAR model of order (1,1).

2.3 A Spatial Simultaneous Equations Model

A structural form of a simultaneous count data autoregressive model of order one can

be written (cf. Brännäs, 2013) as an extension of the model in (1), i.e.

yt = A0 ◦ yt + A1 ◦ yt−1 + εt, t = 2, . . . , T, (11)

where the M×M matrix A0 is of the general form

A0 =



0 α0
12 α0

13 · · · α0
1M

α0
21 0 α0

23 · · · α0
2M

...
. . . . . . . . .

...
...

. . . . . . α0
M−1,M

α0
M1 · · · · · · α0

M,M−1 0


.

The endogenous yt = (y1t, . . . , yMt)
′ vector and its lags are all integer-valued. The model

contains simultaneity or interdependence across these yit variables as reflected by the

non-zero off-diagonal elements in the A0 matrix. The simultaneity is here and elsewhere

seen as a consequence of a low sampling frequency. The parameters in the A0 and A1

matrices are interpreted as probabilities.

By this specification there can only be contemporaneous positive or no effects at all

between the yit, i . . . , M variables for the given specification of A0. This is beneficial
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in guaranteeing that yit ≥ 0, for all i and t. Even if this condition is to hold true we

may still account for some smallish negative effects by using a minus sign for some of

the α0
ij in A0. In such cases thinning is to be interpreted as −(α0

ij ◦ yjt). Related to this

representation, we may define A∗ = IM −A0, with IM the M×M identity matrix. The

model can then be written as

A∗ ◦ yt = A1 ◦ yt−1 + εt. (12)

This form reveals the closeness to structural VAR models.

With up to 2 ·M2 −M potential parameters in the A0 and A1 matrices the general

model in (11) is likely too rich in parameters for most practical purposes unless some ad-

ditional restrictions are enforced beyond the zeroes of the diagonal of A0. These zeroes

correspond to the normalisation convention (cf. the ones in the A∗ matrix). Also note,

that λ and Σ, bring along M + M(M + 1)/2 additional and potentially free parameters.

The specification that comes closest to the classical, static simultaneous equations

model has A1 = 0, A0 time invariant, and with exogenous variables included only

through λt, i.e.

A∗ ◦ yt = λt + ε∗t , (13)

where ε∗t = εt−λt. If yt takes on large numbers, λt can potentially be specified as linear

in the exogenous variables vector zt without violating the non-negativity constraint of

yt. The general simultaneous equations model with time dependent parameters based

on exogenous variables and the weight matrix W, which may be time-varying, is written

yt = A0t ◦ yt + A1t ◦ yt−1 + λt + ε∗t . (14)

Brännäs (2013) gives some moment properties for the structural form representation

in (11)-(12). For these models the literature does not offer any general results for the

direct inversion or division of thinning operations u = θ ◦ v that would result in some

practical form of thickening or expansion operation, say, v = θ∗ � u, and much less so

for the matrix case involved in obtaining general types of reduced forms. Hence, giv-

ing general reduced form results with explicit distributional properties and functional

expressions for the yt vector is difficult. One result related to this problem is due to

Littlejohn (1994), but it appears difficult to handle in general setups. Some new results
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for the inversion in terms of moments are relatively easy to obtain and they are given

in Appendix A. These results are supportive of the results obtained by a different ap-

proach below. While different, the current specification shares the feature of a non-exact

relationship between distributions for general nonlinear simultaneous equation models

and their reduced forms.

We start by conditioning the model in (11) on past observations Yt−1 and on the set

of exogenous variables to get

E(yt|Yt−1) = A0tE(yt|Yt−1) + A1tyt−1 + λ.

The matrix A∗t = I − A0t is assumed invertible in this complete system, so that the

conditional expectation is

E(yt|Yt−1) = A−1
∗t A1tyt−1 + A−1

∗t λt = Ctyt−1 + λ∗t .

This is the key part of the reduced form and a full reduced form can now be written

yt = E(yt|Yt−1) + ξt = Ctyt−1 + λ∗t + ξt, (15)

where E(ξt|Yt−1) = 0. This way of writing the model is useful for model analysis,

though it is not automatically useful as a description of the data generating process.

There is no guarantee that integer-valued yt can be generated unless the distribution

of ξt can be ascertained. The structural form in (11)-(12) is mostly seen as the ideal

interpretational description of the data generating process with its explicit direct and

indirect effect interpretations of the parameterisation. The reduced form (15) only gives

total effects, but it is the cornerstone for, e.g., distributional properties and forecasting.

The model in (15) is of a VAR(1) form, which makes model based analysis by analogy

to the VAR literature straightforward. To obtain the corresponding conditional variance

V(yt|Yt−1) we rewrite the structural form in (14) as:

yt = A0tyt + A1tyt−1 + λt + ε∗t + (A0t ◦ yt −A0tyt) + (A1t ◦ yt−1 −A1tyt−1)

= A0tyt + A1tyt−1 + λt + ε∗∗t , (16)

where the composite disturbance terms ε∗t = εt − λt and ε∗∗t both have zero means,

but obviously the latter contains both current values and lags of yt. The corresponding
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reduced form is identical to the one in (15) with ξt = (I − A0t)−1ε∗∗t = A−1
∗t ε∗∗t . The

important ingredient for the conditional variance is the one-step-ahead prediction error

ỹt = yt − E(yt|Yt−1). We get

ỹt = A0tyt + A1tyt−1 + λt + ε∗∗t −A0tE(yt|Yt−1)−A1tyt−1 − λt,

= A0tỹt + ε∗∗t = A−1
∗t ε∗∗t

and therefore we get the conditional variance expression

V(yt|Yt−1) = E(ỹtỹ′t|Yt−1) = A−1
∗t E(ε∗∗t ε′∗∗t |Yt−1)(A′∗t)

−1, (17)

where

E(ε∗∗t ε′∗∗t |Yt−1) = Θ0,t−1 −Θ1,t−1 − Σ + [E(εty′t|Yt−1)− λt[E(y′t|Yt−1)](I−A0t)
′

+(I−A0t)[E(ytε
′
t|Yt−1)− E(yt|Yt−1)λ

′
t].

Here, Θ0,t−1 is a diagonal matrix with diagonal elements ∑M
j=1 α0

ij(1− α0
ij)E(yjt|Yt−1), for

i = 1, . . . , M, and diag(Θ1,t−1) = (∑M
j=1 α1

ij(1− α1
ij)yj,t−1, i = 1, . . . , M). The latter matrix

corresponds to the Ht−1 in (5). In these expressions, E(yt|Yt−1) is given in (15), and

E(εty′t|Yt−1) = A1tyt−1λ′t + Σ − (I−A0t)E(yt|Yt−1)λ
′
t from which its transpose can also

be obtained. Derivations for the different parts are given in Appendix B.

2.4 Static Spatial Model

The classical econometric approach to incorporating spatial correlation into a static re-

gression model is through the disturbance term in yit = λit + εit + ui, where λit is a linear

or, say, an exponential function of exogenous variables and possibly of spatial effects,

and ui is a random spatial effect which is taken to be iid and with mean µ. The spatial

correlation in the random error term arises through the model εit = γ ∑M
j=1 Wijεjt + vt

(cf. Anselin, 1988). For all spatial units at time t the M-variate error is written as

εt = γWεt + vt and with vt = vt1.

One count data parametrisation is to use A(W) as in (10) and to write the count data

analogue corresponding to the εit part above as

εt = Γ(W) ◦ εt + vt, (18)
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where, e.g., Γ(W)ij = 1/(1 + exp(γ0 + γWij)), for i 6= j, and equal to zero for the

diagonal elements. Conditioning on previous yt−k, k ≥ 1, we get E(εt|Yt−1) = [I −

Γ(W)]−1κv, where κv = E(vt). Then the model can using yt = E(yt|Yt−1) + ξt with

E(ξt|Yt−1) = 0 be written

yt = λt + [I− Γ(W)]−1κv + µ + ξt, (19)

where µ = E(u|Yt−1) = µ1.

An alternative is to proceed as in the classical count data regression approach (e.g.,

Cameron and Trivedi, 1998; Winkelmann, 2008). In this multivariate context we may

start from E(yit|εt) = εitλit to get E(yit) = E(εit)λit = λit when λit contains a constant

term. The variance is typically of the form V(yit) = λit + σ2
i λ2

it. The general specification

of Brännäs and Johansson (1996) that accounts for dependence across time and spatial

units could be used as a platform to explicitly include spatial effects.

3 Remarks on Estimation

The presence of the yt variables in the right hand side of (11) or (14) implies a depen-

dence with the disturbance term εt. This dependence renders, e.g., the ordinary (con-

ditional) least squares estimator inconsistent. Such a dependence is not present in the

AR(1) representations (1) or (8). Section 2.3 indicated that obtaining a distributionally

well-defined reduced form is nontrivial in general. For that reason maximum likelihood

estimation appears to be beyond reach in most cases, and it will not be discussed in this

introductory account on estimation.

3.1 AR(1) Models

The focus is first on directly estimating the unknown parameters of the autoregressive

models (1) and (8). The presence of the thinning operations seemingly complicates

a direct use of consistent estimation approaches such as conventional conditional or

ordinary least squares (OLS), instrumental variable (IV) or generalised method of mo-

ments (GMM). However, the operators disappear when we consider the prediction error

et = yt − E(yt|Yt−1) = yt − Atyt−1 − λt. The estimators are therefore best viewed as
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minimising sums of squares of prediction errors. We consider both single equation as

well as joint estimation of the full system.

The single equation OLS estimator for spatial unit i and for constant parameters uses

(2) to obtain the prediction error eit = yit − y′t−1αi. − λi, where αi. = (αi1, . . . , αiM)′ is the

transpose of the ith row of the A matrix. For all time series observations for spatial

unit i we may write ei = yi − y(−1)αi. − λi1, where yi = (yi2, . . . , yiT)
′ and y(−1) =

(y1(−1), . . . , yM(−1)) is a T− 1×M matrix with ith column yi(−1) = (yi1, . . . , yi,T−1)
′. The

OLS estimator for equation i is then α̂i

λ̂i

 = (Y′Y)−1Y′yi, (20)

where Y = (y(−1), 1) is unchanged across the i = 1, . . . , M spatial units.

If the αi and λi contain spatial weighing matrices and/or other exogenously deter-

mined variables, as discussed previously, the conditional expectation and the prediction

error are nonlinear in parameters. Then, a nonlinear least squares (NLS) estimator also

minimises the criterion function Si = e′iei, but the estimator is now by necessity of an

iterative type.

In the constant parameter case, the lagged y variables together with a constant vec-

tor are the only used instrumental variables (IV). Additional and higher order lags of

y can be used as additional IVs to obtain an asymptotically more efficient estimator

by the GMM estimation approach. When exogenous variables and spatial weights are

incorporated, at least, the former type of variables can also be used for GMM estimation.

For all equations jointly and with constant parameters, the OLS estimator can in

matrix form be written Â′

λ̂′

 =

 α̂1 . . . α̂M

λ̂1 . . . λ̂M

 = (I⊗ Y′Y)−1(I⊗ Y′)y (21)

with y = (y1, . . . , yM) and where ⊗ is the Kronecker matrix product. Note, that the

SURE (the feasible generalised least squares estimator using information about any co-

variance matrix Σ) estimator of Zellner (1962) based on identical regressors is identical

to single equation or full system OLS. With exogenous influence through the parame-

ters this simplification may no longer be justified. The NLS estimator now minimises
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S = e′e, with respect to the hyper-parameters of At and λt. Here, the M(T − 1) × 1

systemwide prediction error vector is e = (e′1, . . . , e′M)′ = y − (IM ⊗ y(−1)) vech A′t −

(IM ⊗ It−1)Λt with Λt = (λ′1t, . . . , λ′Mt)
′, and where λit = (λi2, . . . , λiT)

′.

The mentioned estimators are all consistent and asymptotically normally distributed.

To obtain a consistent estimator of the covariance matrix of the estimator it is important

to recall that the models are characterised by conditional heteroskedasticity (cf. eq. (5))

and that the prediction error is sharing this property. Hence, the use of a sandwich or

robust covariance matrix estimator is called for. Eq. (5) is an important ingredient in

this. Note though, that (5) is based on strong assumptions about independent thinning

and that using e2
it to replace V(yit|Yt−1) as in the White estimator for linear regressions

may be an even more robust alternative (see also Brännäs, 1995).

3.2 Simultaneous Equations

To estimate simultaneous equation models, we make use of the rewritten simultaneous

equation model in (16), i.e. yt = A0tyt + A1tyt−1 + λt + ε∗∗t , which appears to be the

most convenient starting point. Conventional OLS or NLS estimation will in this case be

inconsistent due to the right hand side endogenous variables. Therefore, for consistent

estimation we consider IV type limited information estimators for single equations as

well as full information estimation for all equations jointly. In these approaches an

important first step is the one of finding instruments for the right hand side endogenous

variables.

Given that the simultaneous equations model contains lagged endogenous variables

which by assumption are independent of the random disturbance term εt in (11) and

(14), it is natural to consider yt−k, k ≥ 1 as potentially valid instrumental variables for

the right hand side yt.

Recall that ε∗∗t contains both current and lagged endogenous variables, but since,

E[(A0t ◦ yt −A0tyt)yt−k|Yt−k] = 0

E[(A1t ◦ yt−1 −A1tyt−1)yt−k|Yt−k] = 0

it follows that vectors yt−k, k ≥ 1 are also unconditionally uncorrelated with the com-

posite disturbance term ε∗∗t . In addition, it follows from the model specification that the
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instrumental variables are correlated with the right hand side yit variables. Therefore,

with these instrumental variables the IV or GMM estimators based on a single equation

or on all equations jointly will, at least, in the constant parameter case, i.e. when the

model contains A0, A1 and λ, be consistent and asymptotically, normally distributed.

The use of the two stage least squares estimator, with (15) estimated in a first step, will

also give a consistent estimator.

Since the number of available instrumental variables will typically be large in this

setting, the GMM estimator will be quite efficient. In fact, the current context is very

close, in how IV matrices are constructed, to the one treated in the literature on the

estimation of the first order dynamic panel data model.

When exogenous variables and weight matrices are nonlinearly included in the A0t

and A1t matrices and in the λt vector, the estimation of the hyper-parameter vector is to

be made by some nonlinear version of the IV or GMM estimators. In such a case, the

exogenous variables and their lags can also be used as instrumental variables. Depend-

ing on the parametrisation, there may be cases where systemwide rather than single

equation estimation should be pursued. This is, e.g., the case when some parameters

are viewed as constant across equations.

Next, we consider estimation based on the prediction error or alternatively on the

reduced form. The ith equation of (11) is yit = ∑M
j=1,j 6=i α0

ij ◦ yjt + ∑M
j=1,j α1

ij ◦ yj,t−1 + εit

and simultaneity implies that the right hand side current yjt variables are correlated

with εit. The prediction error is ỹit = yit − E(yit|Yt−1), which by specialisation of (2) can

be written

ỹit = yit −
M

∑
j=1

cijyj,t−1 − λ∗i ,

where cij is the jth element in the ith row of C = (I−A0)−1A1 and λ∗i is the ith element

of the M× 1 vector (I−A0)−1λ. The prediction error has mean zero, but its variance is

heteroskedastic, cf. (17). For the full system, the prediction error is

ỹt = yt − (I−A0)
−1(A1yt−1 − λ).

Whether we consider limited or full information estimation methods, nonlinearity is a

key ingredient of any least squares estimator based on this prediction error. Obviously,

it will also be important to consider the identifiability of individual equations.
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Appendix A: Some results for binomial thinning operators

The binomial thinning operator is defined as

α ◦ y =
y

∑
i=1

ui,

where y is an integer-valued random variable, and the {ui} sequence is made up of

0− 1 iid random variables. The probability Pr(ui = 1) = α is constant across i. Hence,

the integer-valued α ◦ y ∈ [0, y], and for a given y it follows a binomial distribution. If,

e.g., y is Poisson distributed the distribution of α ◦ y is Poisson distributed as well.

Results are most easily obtained using the probability generating function (pgf). For

the case of a given y we have E(tα◦y|y) = E(tu1+u2+...+uy |y) = Ey(tu) = [t0 · Pr(u =

0) + t1 · Pr(u = 1)]y = [1− α + αt]y. The conditional expectation is then E(α ◦ y|y) =

∂E(tα◦y|y)/∂t|t=1 = αy and unconditionally we get E(α ◦ y) = Ey[E(α ◦ y|y)] = αE(y).

The corresponding second order moments are E[(α ◦ y)2|y] = αy + α2y(y− 1) and

unconditionally E[(α ◦ y)2] = α2E(y2) + α(1− α)E(y). From these results it follows that

the conditional variance is V(α ◦ y|y) = α(1− α)y and that the unconditional variance

is V(α ◦ y) = α(1− α)E(y) + α2V(y). In addition, E[(α ◦ yi)(α ◦ yj)|yi, yj] = α2yiyj and

E(α ◦ yi)(α ◦ yj) = α2E(yiyj).

Among other useful results we mention the following equalities in distribution: α ◦

(β ◦ y) = (αβ) ◦ y; α ◦ β ◦ y = β ◦ α ◦ y and α ◦ (y + x) = α ◦ y + α ◦ x. Note however, that

α ◦ y + β ◦ y and (α + β) ◦ y are not equal in distribution.

Some inversion results

Some inversion results can easily be obtained in a univariate framework using the pgf.

With equality in distribution for α ◦ y = ∑
y
i=1 ui = x we ideally wish to characterise the

distribution of y in terms of the one for x. The pgf of x satisfies E(tx) = Ey[E(tu)y] and

we already gave the result E(y) = α−1E(x), above. We also gave the result E(x2) =

E[(α ◦ y)2] = α2E(y2) + α(1− α)E(y) which then directly gives, e.g., V(y) = α−2V(x)−

α−2(1− α)E(x). Taking higher order derivatives of E(tx) with respect to t and setting
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t = 1 gives that all moments up to order k can be obtained from the equality

E

[
k

∏
i=0

(y− i)

]
= α−k E

[
k

∏
i=0

(x− i)

]
.

We may proceed by using the assumption of independence between thinning oper-

ations to study xi = ∑M
j=1 αij ◦ yj, for i = 1, . . . , M. Conditional on y we have for every

xi, i = 1, . . . , M, that E(t∑M
j=1 αij◦yj |y) = ∏M

j=1(1− αij + αijt)yj . The conditional expectation

of xi conditional on y is then

E(xi|y) = ∂E(txi |y)/∂t|t=1 =
M

∑
j=1

αijyj

so that the unconditional expectation is E(xi) = ∑M
j=1 αijE(yj). A first inversion result

then follows as

E(y) = A−1E(x).

To obtain an inversion result for the simultaneous equation model containing the

A∗ matrix with its negative elements, note that for x = −(α ◦ y) we get E(x|y) = −αy.

Therefore, for (12) the inversion is of the form E(yt) = A−1
∗ E(A1 ◦ yt−1 + εt) which gives

E(yt) = (A∗ −A1)
−1λ, and for (13) it is E(yt) = A−1

∗ λt.

Additional results for the multivariate case x = A ◦ y can be obtained by using the

full multivariate probability generating function Ψ = E(tx1
1 tx2

2 , · · · txm
M ). For instance,

conditional on y the conditional pgf can be written as Ψy = ∏M
j=1 E(t

xj
j |y). The con-

ditional and unconditional results given above can then be obtained from ∂Ψy/∂ti =

Ψy ∂ ln Ψy/∂ti evaluated at t1 = . . . = tM = 1. For higher order moment results higher

order derivatives of Ψy are required.
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Appendix B: Brief derivation of the structural form conditional

variance

The conditional expection of ε∗∗t = (εt−λt) + (A0t ◦ yt−A0tyt) + (A1t ◦ yt−1−A1tyt−1)

is zero, so that V(yt|Yt−1) = A−1
∗t E(ε∗∗t ε′∗∗t |Yt−1)(A′∗t)

−1. We use short hand notations

and drop the subindex t to write ε∗∗t = ε̄ + Ā0 + Ā1. The expression to simplify is then

E(ε∗∗t ε′∗∗t |Yt−1) = E[ε̄ε̄′ + ε̄Ā′0 + ε̄Ā′1 + Ā0ε̄′ + Ā0Ā′0 + Ā0Ā′1

+Ā1ε̄′ + Ā1Ā′0 + Ā1Ā′1|Yt−1].

It follows directly from the assumptions that E(ε̄ε̄′|Yt−1) = Σ and that E(ε̄Ā′1|Yt−1) = 0.

Obviously, for the transposed matrix E(Ā1ε̄′|Yt−1) = 0′.

We get E(Ā1Ā′1|Yt−1) = E((A1t ◦ yt−1)(A1t ◦ yt−1)
′|Yt−1)−A1tyt−1y′t−1A′1t which af-

ter manipulation comes out as a diagonal matrix with diagonal elements as in Θ1,t−1.

To obtain E(Ā0Ā′1|Yt−1) we rewrite the model as A0t ◦ yt = yt−A1t ◦ yt−1− εt to get

Ā0 = (I−A0t)yt − Ā1 − εt −A1tyt−1. It then follows that

E(Ā0Ā′1|Yt−1) = (I−A0t)[E(yt|Yt−1)y′t−1A′1t − E(yt|Yt−1)y′t−1A′1t]−Θ1,t−1

= −Θ1,t−1.

Next to get E(ε̄Ā′0|Yt−1) we rewrite Ā′0 as above and can then write

E(ε̄Ā′0|Yt−1) = E((εt − λt)(yt −A0tyt)
′|Yt−1)− E((εt − λt)(A0t ◦ yt−1)

′|Yt−1)

−E((εt − λt)ε
′
t|Yt−1)

= [E(εty′t|Yt−1)− λtE(yt|Yt−1](I−A0t)
′ − Σ.

Finally, E(Ā0Ā′0|Yt−1) = E(A0t ◦ yt(A0t ◦ yt)′|Yt−1) − A0tE(yty′t|Yt−1)A′0t. After some

tedious manipulation we write the result as diag(Θ0,t−1) = ∑M
j=1 α0

ij(1− α0
ij)E(yjt|Yt−1),

for i = 1, . . . , M.

Collecting parts we obtain the result given in Section 2.3.
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