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Abstract

Explanatory variables are incorporated into the count data (integer-valued) autore-
gressive model of order one. The properties of the resulting model are studied for
both univariate and panel data speciÞcations. Weighted and unweighted conditional
least squares and conditional generalized method of moment estimators are introduced
and evaluated by Monte Carlo experimentation. The results indicate that the least
squares estimators perform well for realistically short time series. Tests against time
dependent parameters are obtained and their properties are evaluated. Tests based
on least squares perform well in small samples. An empirical illustration is included.
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1. Introduction

In this paper we study the Þrst order autoregressive model [AR(1) model] for count data,
when basic parameters depend on explanatory variables. For the basic count data model,
the Poisson model, the constant parameter AR(1) model was introduced by McKenzie
(1985) and later discussed by McKenzie (1988), Al-Osh and Alzaid (1987) and others.
In terms of the Þrst two moments, this model and the Gaussian are related. In other
improtant respects the models are quite different, however. For instance, the marginal
Poisson distribution of the process has only one parameter depending on basic process
parameters, while the Gaussian has two.

Regression models for time series count data are becoming increasingly often applied.
Different approaches were initially suggested by Zeger (1988), Zeger and Qagish (1988) and
Smith (1979). Recent work of Brännäs and Johansson (1992, 1994) and others suggest that
these approaches are empirically feasible. The only regression model with an explicit lag
structure is that of Zeger and Qagish (1988). It is quite different from the one considered
here, though. In the other regression models the autocorrelation structure is assumed to
be due to a latent process. A different but pure time series model was given by Jacobs
and Lewis (1983).

In this paper we study in more detail the consequences and adaptations that are
required when explanatory variables are included in the count data AR(1) model (see
also Berglund and Brännäs, 1995). We obtain new conditional least squares (CLS) and
generalized method of moment (GMM, Hansen, 1982) estimators for the AR(1) model
containing explanatory variables. Test statistics are derived for testing linear restrictions
on parameters. The obtained estimators and test statistics are evaluated and compared
by Þnite sample Monte Carlo experimentation. For the case of Poisson and time invariant
parameters the CLS and maximum likelihood estimators were partly evaluated by Al-Osh
and Alzaid (1987), Jin-Guan and Yuan (1991), Ronning and Jung (1992) and by Brännäs
(1994) who also compared them to GMM.

Adopted predictors and prediction error variances extending previous results of Brännäs
(1994) are derived. Multipliers and implied survival function are also given. For a mul-
tivariate dependent AR(1) Poisson model appropriate for panel data with explanatory
variables, corresponding measures are derived and some comments on inference are made.

The model is formally introduced in Section 2. The estimators and test statistics are
given in Section 3. The design and results of a Þnite sample Monte Carlo experiment are
given in Section 4. Section 5 gives predictors, dynamic multipliers and implied survival
function. A brief empirically based illustration is included in Section 6. Section 7 presents
the panel data model. The Þnal section concludes.

2. The Model

Consider a stationary {yt} process with Poisson marginal densities generated according
to an autoregressive model of order one [the AR(1) model]. To start we let parameters be
constant over time, i.e. they are not affected by explanatory variables. We write

yt = α ◦ yt−1 + ²t, t = 2, . . . , T, (1)

where α◦y =Py
i=1 ui, with ui a sequence of independent and identically distributed (i.i.d.)

0-1 random variables independent of y and with Pr(ui = 1) = α. The α ◦ y operator
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represents binomial thinning of y such that each of the y individuals either �survives�
(ui = 1) with equal probability α or �dies� (ui = 0) with probability 1 − α. Under
these assumptions it holds that E(α ◦ y) = Ey[yE(ui|y)] = αE(y) and that V (α ◦ y) =
Vy[E(α ◦ y|y)] +Ey[V (α ◦ y|y)] = Vy(αy) +Ey[α(1− α)y] = α2V (y) + α(1− α)E(y).

The ²t is assumed i.i.d. Poisson with mean λ > 0 and independent of yt−1. For α ∈
(0, 1) and y1 discrete self-decomposable the AR(1) process is stationary (e.g., McKenzie,
1988).

The properties of the model with time invariant α and λ have been detailed upon
by Al-Osh and Alzaid (1987) and for a slightly different paramet- rization by McKenzie
(1988). In the present case both the mean and the variance of the {yt} process is λ/(1−α).
It is easy to verify that the autocorrelation at lag k is αk, which obviously is restricted to
be positive.

Extensions to more general ARMA models are discussed by McKenzie (1988) and
others. The model (1) remains of the same form for other distributions such as the bino-
mial, negative binomial or generalized Poisson (Alzaid and Al-Osh, 1993, McKenzie, 1986,
Brännäs, 1994, Berglund and Brännäs, 1994). The negative binomial allows for overdis-
persion, while the generalized Poisson model allows for both under- and overdispersion.

To make the model more attractive for econometric application, we need to extend
the model such that explanatory variables are made part of the model. As discussed by
Berglund and Brännäs (1994) in the context of stock of plant time series data, the α
parameter represents the survival probability of a plant, which, for instance, could depend
on the business cycle phase. The λ represents the mean entry of plants and may, e.g.,
depend on market characteristics that obviously vary over time. Hence, we introduce
explanatory variables through these parameters, as αt ∈ (0, 1) and λt > 0. Obviously,
there are a number of potential candidates satisfying these range conditions. We assume
two quite convenient and in other corresponding situations widely adopted speciÞcations;
the logistic distribution function, i.e.

αt = 1/[1 + exp(xtβ)] (2)

and the exponential function
λt = exp(ztγ). (3)

The explanatory variable vectors xt and zt are treated as Þxed and β and γ are the
corresponding vectors of unknown parameters.

The full model can now be written

yt = αt ◦ yt−1 + ²t, t = 1, . . . , T. (4)

The following moment relations can be shown to hold true for the time varying model (4):

E(yt) = αtE(yt−1) + λt (5)

V (yt) = α2tV (yt−1) + αt(1− αt)E(yt−1) + λt (6)

γ(t, k) =

"
k−1Y
i=0

αt−i

#
V (yt−k), k = 1, 2, . . . (7)

ρ(t, k) = γ(t, k)/ [V (yt)V (yt−k)]
1
2
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=

"
k−1Y
i=0

αt−i

# ·
V (yt−k)
V (yt)

¸ 1
2

, k = 1, 2, . . . , (8)

where γ(t, k) and ρ(t, k) are the autocovariance and autocorrelation functions at time t
and lag k, respectively. In this time dependent case the autocorrelation depends on the
position in the time series through both αt and λt. With variances approximately equal
we expect that ρ(t, k) > ρ(t, k + 1) for any t and k = 1, 2, . . . . As can be expected, the
moment expressions (5)-(8) reduce to those of the time invariant case when the αt and
λt parameters are time invariant. For identical initial speciÞcations of E(y1) and V (y1)
all subsequent expected values and variances are equal. The marginal distribution of yt is
Poisson with parameter E(yt) = V (yt).

In Figures 1�2 we illustrate the time series and autocorrelation properties. Figure
1 gives ρ(t, 1) for a series generated according to the design used in the Monte Carlo
experiment of Section 4, below. In this particular case there is substantial variation in

ρ(t, 1) = αt [V (yt−1)/V (yt)]
1
2 . Not surprisingly, there is a strong covariation between the

autocorrelation and both the observed series and the mean function of the process. Figure
2 plots ρ(t, k), for k = 1, 2, 3, and demonstrates the expected size relationship between
autocorrelations.

3. Estimation and Testing

In this section we consider the estimation of unknown model parameters by conditional
least squares (CLS) and generalised method of moments (GMM) estimators for models
with the same moment structure as Poisson. We also give test statistics for linear restric-
tions. While, maximum likelihood estimation may be feasible for the Poisson model, it is
quite intractable for some other distributions, such as the generalized Poisson (Alzaid and
Al-Osh, 1993, Brännäs, 1994) and therefore it is not considered here.

3.1 Conditional Least Squares

The one-step ahead prediction error is of the form

et = yt − αtyt−1 − λt,
where αt and λt are as in (2)-(3).

The CLS estimator of ψ0 = (β0,γ0) minimizes the sum of squared prediction errors
Q =

PT
t=2 e

2
t . As in many nonlinear least squares problems the application of the Gauss-

Newton algorithm to minimize Q is straightforward. At the iterative step k + 1 the
algorithm gives the new estimate ψk+1 according to

ψk+1 = ψk +

"
TX
t=2

∂et
∂ψ

· ∂et
∂ψ0

#−1
|k

"
TX
t=2

et
∂et
∂ψ

#
|k
,

where the gradient and the approximation to the Hessian matrix are evaluated at the
previous estimate ψk. The required Þrst order derivatives are given by

∂et/∂β = yt−1x0tΛt/(1 + Λt)
2

∂et/∂γ = −z0tλt,
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where Λt = exp(xtβ).
On convergence, the conventional covariance matrix of the estimator �ψ is estimated as

Cov( �ψ) = F−1 =
"
TX
t=2

∂et
∂ψ

· ∂et
∂ψ0

#−1
,

which is to be evaluated at the estimator �ψ.
Note that the CLS estimator is appropriate for any model satisfying the same predictor

expression, i.e. the Poisson assumption is not required. For instance, the generalized
Poisson model can be estimated by this approach at the price of not enabling separate
estimation of a parameter characterizing this particular distribution from a constant term
in λt. Consistency and asymptotic normality follows from, for instance, Wooldridge (1994,
Theorems 4.3 and 4.4).

As is obvious from the variance of yt, given in (6), the process is heteroskedastic
whenever the parameters are time dependent. The same holds true for the variance of the
prediction error. This will have a biasing effect on the covariance matrix estimator.

A simple approach is to use the CLS estimator �ψ, but to correct the covariance matrix
estimator for heteroskedasticity. An estimator of the asymptotic covariance matrix is of
the form

Cov( �ψ) = F−1JF−1,
where

J =
TX
t=2

e2t
∂et
∂ψ

· ∂et
∂ψ0

is evaluated at �ψ. The conditional variance of the prediction error is E(e2t |yt−1) = αt(1−
αt)yt−1 + λt. With estimated parameters this can be used instead of e2t in the J matrix
of the corrected Cov( �ψ).

Alternatively, we may attempt to Þnd a more efficient estimator from the weighted
criterion function

Q =
TX
t=2

e2t
E(e2t |yt−1)

, (9)

where both the numerator and the denominator are functions of the unknown ψ vector.
A simpler weighted CLS estimator starts from CLS estimation to obtain an estimate

of E(e2t |yt−1). In a second step the weighted CLS estimator minimizes Q in (9) to obtain
�ψ estimates with the E(e2t |yt−1) estimator treated as known. The gradient vector is given
by
PT
t=2 etct (∂et/∂ψ) and the approximate Hessian also used to estimate the asymptotic

covariance matrix of �ψ is given by

Cov( �ψ) =

"
TX
t=2

ct
∂et
∂ψ

· ∂et
∂ψ0

#−1
,

where ct = 1/E(e2t |yt−1) is evaluated at the Þrst step estimates. The consistency and
asymptotic normality of the estimator follows directly (e.g., Wooldridge, 1994, Theorems
4.3 and 4.4).

Consider next the testing of linear restrictions on the parameter vector ψ of the Pois-
son AR(1) model. Important special cases include testing hypotheses about individual
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parameters as well as hypotheses of time invariant α and λ parameters (or equivalently
that all slope parameters in β and γ are equal to zero).

For the CLS or the weighted CLS estimators testing is straightforward by performing
Wald type tests based on the corresponding appropriate covariance matrix estimator. We
formulate r linear restrictions Rψ = 0r and use the asymptotically χ

2(r) distributed test
statistic

W = �ψ
0
R0[RCov( �ψ)R0]−1R�ψ ∼ χ2(r).

3.2 Conditional GMM

In this subsection we consider the GMM estimator Þrst introduced by Hansen (1982). The
estimator is consistent and efficient under certain conditions. In particular, we employ
the conditional GMM estimator introduced by Newey (1985) and Tauchen (1986). The
conditioning set consists of the histories of previous values (the predetermined variables)
yt−1, yt−2, . . . and of xt, xt−1, . . . and zt, zt−1, . . . . The conditional GMM estimator
for time invariant Poisson and generalized Poisson AR(1) models was studied by Brännäs
(1994).

The conditional GMM estimator minimizes a quadratic form

q =m(ψ)0 �W−1m(ψ), (10)

where m(ψ) is the vector of conditional moment restrictions. Subject to mild regularity
conditions (e.g., MacKinnon and Davidson, 1993, ch. 17) the estimator of ψ is consistent
and asymptotically normal for any symmetric and positive deÞnite matrix �W, such as the
identity matrix I. The GMM estimator is efficient when �W is the asymptotic covariance
matrix of m(ψ). To obtain �W, q can in a Þrst step be minimized using say the identity
matrix I for �W. For a second step the consistent estimator �ψ from step one is used to
form �W after which the q in (9) is minimized.

For past observations y1, . . . , yt−1, the conditional mean of yt in the AR(1) model is
αtyt−1 + λt and the one-step-ahead prediction error is et = yt − αtyt−1 − λt. The normal
equations for CLS correspond to empirical moment restrictions: T−1

PT
t=2 et(∂et/∂β) =

0 for β and T−1
PT
t=2 et(∂et/∂γ) = 0 for γ, with corresponding theoretical, conditional

moments E[et(∂et/∂β)|yt−1] = 0 and E[et(∂et/∂γ)|yt−1] = 0. It follows that the CLS
estimator can be interpreted as a conditional GMM estimator with equal numbers (k) of
unknown parameters and restrictions and with �W equal to the identity matrix of order k,
Ik.

Additional conditional moment restrictions are available. For instance, Alzaid and
Al-Osh (1988) give a general result that we adapt into V (yt|yt−1) = E(e2t |yt−1) = αt(1−
αt)yt−1 + λt. In addition, E(etet−1|yt−1) = 0 can be employed. We recognize that there
may be other higher order conditional moment restrictions that could be used for GMM
estimation.

The estimation ofW is most easily based on the consistent Newey and West (1987a)
estimator

�W = �Γ0 +
pX
j=1

(1− j

p+ 1
)[�Γj + �Γ

0
j ], (11)

where �Γj = T
−1PT

t=j+1mt( �ψ)
0mt−j( �ψ), j = 0, 1, . . . , p, and p has to be given.
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The estimated asymptotic covariance matrix of the GMM estimator based on �W is

Cov( �ψ) =
1

T
[ �G0 �W−1 �G]−1, (12)

where the �G matrix has rows ∂mj/∂ψ
0 evaluated at �ψ.

To test the time invariance using the GMM approach we may apply analogous tech-
niques as used within likelihood theory (Newey and West, 1987b). A Lagrange multiplier
(LM) or score statistic is analytically and numerically simple when under HA the numbers
of restrictions and unknown parameters are equal (e.g., Davidson and MacKinnon, 1993,
ch. 17). In general, the LM statistic is of the form

LM = Tm(�ψ0)
0[W(�ψ0)]

−1m(�ψ0), (13)

where �ψ0 is a GMM estimator of ψ0 under H0 andW is estimated using these estimates.
We may use the CLS estimator of β0 obtained from α = 1/[1 + exp(β0)] and of γ0 from
λ = exp(γ0) under H0 and the moment restrictions of the full CLS estimator under HA.
The restriction vector under HA is m(ψ0)

0 = (�α(1 − �α)[
PT
t=2 etyt−1 :

PT
t=2 etxtyt−1] :

−�λ[PT
t=2 et :

PT
t=2 etzt]). Asymptotically, LM in (13) is distributed as a χ2(r) variate,

where r is the number of restrictions imposed on ψ.
For a model estimated under HA, i.e. under the time varying speciÞcation with αt

and λt, the application of the Wald statistic with linear restriction Rψ = 0r is again
straightforward. We get

W = T �ψ
0
R0[R[G0 �W−1G]−1R0]−1R�ψ ∼ χ2(r).

4. Small Sample Performance

The small sample Monte Carlo experiment aims at providing a partial comparison and
evaluation of the properties of the different versions of the CLS estimator and the condi-
tional GMM estimator in the Poisson case. In addition, we evaluate the size and power
properties of linear restriction tests.

4.1 Design

The following basic design with respect to the αt and λt parameters is employed:

αt =
1

1 + exp(β0 + β1xt)
and λt = exp(γ0 + γ1zt).

The scalar xt and zt variables are generated from Gaussian AR(1) processes with unit
variance, white noise innovations and with AR(1) parameters 0.7 and 0.8, respectively.
Both variables are treated as Þxed over replications. The parameters are set such that αt
takes approximate average values 0.7 or 0.9 (β0 = −1 or −2, with β1 free to be varied);
for λt the mean is varied between approximate average levels 1 and 5 by setting γ0 = 1
and γ1 between −0.3 and 0.3. Two sample sizes are employed, T = 50 and 200, and the
number of replications is 1000. In generating the data an initial set of 150 observations in
each replication is discarded.

For both unweighted and weighted [weights E(e2t |yt−1) estimated in a Þrst step by
CLS] CLS estimation Gauss-Newton algorithms are used, while for conditional GMM a
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simplex algorithm is used. The GMM estimator is obtained in two steps: (i) CLS estimates
are used to get a Newey and West (1987a) estimator of W, with p = 4, and (ii) the full
GMM estimator with 6 restrictions for q is minimized. The restrictions beyond those
corresponding to CLS are the conditional prediction error variance and the conditional
lag one autocovariance of the prediction error.

4.2 Results

The biases and MSEs for some selected values on the parameters are given in Tables A �
C. The overall picture is quite clear � for realistically short time series, there is no gain
in bias and MSE properties from using the more elaborate GMM estimator instead of
either of the CLS estimators. The relative performance of GMM improves for T = 200
and is closer to or even better than CLS for even larger sample sizes. No doubt, GMM
will become the more efficient one of the two for very long time series.

There is a substantial improvement in MSE performance in most cases when the
weighted CLS estimator is used instead of the unweighted CLS. The difference between es-
timators is smaller for the larger sample size of T = 200. This also implies that the GMM
estimator is inferior to the weighted CLS estimator in the MSE sense. With respect to
bias we Þnd no large difference between the two CLS estimators, while both have smaller
bias than GMM. Again, differences get smaller for T = 200.

The size and power properties for a two-sided t-test of H0 : γ1 = 0 are summarized in
Figure 3. The test is based on the CLS estimator and is evaluated at a nominal signiÞcance
level of 5 per cent (assuming normality). The Þgure provides a comparison of the effect of
using e2t or E(e

2
t |yt−1) in the J matrix of the corrected covariance matrix estimator. While

there is hardly any notable difference between the two alternatives for the larger sample
size of T = 200, there are considerable differences in favour of E(e2t |yt−1) for T = 50. The
sizes of this alternative test are not signiÞcantly different from the nominal 0.05 for either
sample size. With β0 = −2 and a higher average of about 0.9 for αt, the size is signiÞcantly
too high for T = 50 and close to being insigniÞcantly different from the nominal size for
T = 200 for the better E(e2t |yt−1) variant.

The size and power properties of the Wald tests based on CLS with the E(e2t |yt−1)
corrected covariance matrix estimator and the WCLS procedure are comparable for β1 =
−1, while there are differences for β1 = −2, cf. Figure 4. In this latter case when the
average of αt is higher, the weighted CLS estimator results in improved size properties.
For the Wald test based on the GMM estimator, the sizes are signiÞcantly too high for
both sample sizes (0.25 for T = 50 and 0.12 for T = 200).

In Figure 5 we give sizes and powers for the testing of time invariance, i.e. of the joint
test of β1 = 0 and γ1 = 0, based on a Wald test for the CLS estimator and the E(e

2
t |yt−1)

corrected covariance matrix estimator and an LM test for the GMM estimator. In the
illustrative special case of the Þgure, sizes are not signiÞcantly different from the nominal
sizes of 0.05. As expected the power is increasing with sample size. While the LM test is
less powerful for T = 50, powers are almost identical for T = 200.

In summary, we Þnd that the best overall estimator and test performance is obtained
with the weighted CLS estimator and associated Wald test statistics. Computationally,
this estimator is simple to code and fast. The GMM estimator was found to diverge in
1�2 replications out of 1000 in each cell for T = 50.
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5. Prediction, Multipliers and Survival

In this section we consider the prediction of a future value yT+h given that we have
observed the series and associated explanatory variables up through time T , i.e. y1, . . . , yT
is observed. The parameters are treated as known. We also give some expressions for
dynamic multipliers given changes in x and/or in z. Finally, we outline the implied
survival function and some measures based on this.

5.1 Prediction

By repeated substitution we may write the future values of the process

yT+h =

"
hY
i=1

αT+i

#
◦ yT +

hX
i=1

 hY
j=i+1

αT+j

 ◦ ²T+i, h = 1, 2, . . . , (14)

where in this and subsequent expressions αj = 0, j > h, and the equality should be
interpreted as one of equality in distribution. To predict we obviously need to know the
future values of explanatory variables xT+j and zT+j for j = 1, . . . , h.

From (14) we obtain the h-step ahead predictor

�yT+h|T = E(yT+h|y1, . . . , yT )

=

"
hY
i=1

αT+i

#
yT +

hX
i=1

λT+i

 hY
j=i+1

αT+j

 . (15)

As h gets larger the products in (14) become smaller and the impact of yT is diminishing.
The second term is of the form λT+h + λT+h−1αT+h + λT+h−2αT+hαT+h−1 + . . . Hence,
the effects of more remote λt�s decline approximately in a geometric way. For the time
invariant case Brännäs (1994) obtains the predictor αhyT + λ(1 − αh)/(1 − α), which
approaches the mean of the process as h → ∞. As α → 1 the predictor approaches yT ,
which is to be expected on comparison with a random walk model.

The prediction error is
eT+h = yT+h − �yT+h|T .

It follows that E(eT+h) = 0, for any h > 0, i.e. the predictor is unbiased. The prediction
error variance at lead h = 1 takes the form

V (eT+1) = E
h
(αT+1 ◦ yT − αT+1yT )2

i
+E

h
(²T+1 − λT+1)2

i
= αT+1(1− αT+1)E(yT ) + λT+1. (16)

Proceeding in a similar way it can be shown that the prediction error variance at an
arbitrary lead h > 0 can be written on the form

V (eT+h) =
hY
i=1

αT+i [1− αT+i]E(yT ) +
hX
i=1

λT+i

 hY
j=i+1

αT+j

 . (17)

For the time invariant case the prediction error variance (1 − α2h)V (yT ) increases with
the length of the forecast horizon h and approaches the variance of the process (Brännäs,
1994). In view of (17), it is not possible to draw a related general conclusions, as the
variances depend on time dependent αt and λt.
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5.2 Multipliers

Consider dynamic multipliers in terms of the expected value of the process, E(yt). By
repeated substitution in (5) we obtain

E(yt) =
tY
i=s

αiE(ys−1) +
tX
i=s

λi

 tY
j=i+1

αj

 ,
where αj = 0 for j > t.

To simplify assume that xt and zt do not contain common variables. General expres-
sions for the delayed multipliers for variables xks and zks for some s < t can after some
manipulation be written on the forms

∂E(yt)

∂xks
= −βkexsβαs

tY
i=s

αiE(ys−1)

∂E(yt)

∂zks
= γkλs

 tY
j=s+1

αj

 .
To implement the multiplier with respect to xks we may replace E(ys−1) with ys−1. In
fact, this is what arises when taking the derivative on the predictor in (15). Intermediate
run multipliers are obtained by summing the delayed multipliers. We get

tX
i=s

∂E(yt)

∂xks
= −βkexsβαs

tY
i=s

αiE(ys−1)

−βkexs+1βαs+1
 tY
i=s

αiE(ys−1) + λs

 tY
j=s+1

αj


. . .

−βkextβαt
 tY
i=s

αiE(ys−1) + λs
tY

j=s+1

αj + . . .+ λt−1αt


tX
i=s

∂E(yt)

∂zks
= γk

tX
i=s

λi

 tY
j=i+1

αj

 .
The long run multipliers are obtained by letting t→∞ in the sums of the intermediate

multipliers.

5.3 Survival Function

The variables ui in the binomial thinning operator associated with (1) and (4) are inde-
pendent over time. Hence, a component ui in y can be viewed as new at some time s and
to have survived with probability αs+1 to time s + 1, with probability αs+1αs+2 to time
s+ 2, and so on. The resulting survival function, F̄ (·), is

F̄ (s+ k) =

(
1, k = 0Qs+k
i=s+1 αi, k = 1, 2, . . .
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With estimated parameters survival functions can therefore readily be calculated. In
addition, based on the survival function measures such as the mean, median or mean
residual survival time can be calculated.

The mean survival time of a component which is new at time s is given by

m(s) = 1 +
∞X
k=1

s+kY
i=s+1

αi.

The median survival time is located in the time interval (d, d+1) for which F̄ (d) > 0.5 and
F̄ (d+ 1) < 0.5. The mean residual time starting at s but after d > 1 is

P∞
i=d F̄ (i)/F̄ (d).

6. Empirical Illustration

Consider as an illustration of some of the introduced techniques the number of Swedish
mechanical paper and pulp mills 1921�1981, cf. Figure 6. This industrial production
technology is obviously on its way out and new production capacity is created in more
high tech plants.

Table 1 gives parameter estimates for a simple model, where the industrial gross proÞt
margin and GNP are used as explanatory variables. The Þt (based on weighted CLS
estimates) of the model is exhibited in Figure 6 and is quite good. In Figure 7 the estimated
survival probability (for surviving one year) is plotted together with the estimated mean
entry. Evidently, there are negative trends in both measures and in addition we note
a negative correlation between the two. This is not surprising in view of the relative
constancy of the expected value of the process, cf. (5). Both measures appear to provide
pictures of business cycles.

In Figures 8 and 9 we give the implied survival functions starting at 1921 and 1931 and
mean residual life times. The survival functions are quite different indicating a smaller
survival probability over the Þrst few years for mills started in 1931. The mean residual
life times for mills started in 1921 and 1931 follow the same trajectory. There is a through
around 1930 and a peak in mean residual time around 1940. After this the mean residual
life time is declining. The implied mean life times are 6.9 years for a new mill in 1921
and 5.7 years for a mill started in 1931. A Wald test of time invariant α and λ rejects the
hypothesis (p = 0).

7. Panel Data

Consider a panel ofM cross-section units and T time periods. We may write anM -variate
AR(1) model for integer-valued data as

y1
y2
...
yM


t

=


α1t 0 . . . 0
0 α2t . . . 0
...

...
. . . 0

0 0 . . . αMt

 ◦

y1
y2
...
yM


t−1

+


²1
²2
...
²M


t

or

yt = At ◦ yt−1 + ²t,
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for t = 2, . . . , T . The parameters are different for different cross-section units as well as
over time and we let the dependence between units be generated by

²t =


²∗1
²∗2
...
²∗M


t

+ ξt


1
1
...
1

 = ²∗t + ξt1.
In the Poisson case the ²∗it are independent Poisson variables with parameters λit, i =
1, . . . ,M, t = 1, . . . , T . The scalar ξt, t = 1, . . . , T , is independently Poisson distributed
with parameter δ (e.g., Johnson and Kotz, 1969, ch. 11). Note, that without larger
difficulties δ can be allowed to be time dependent and speciÞed as, for instance, δt =
exp(wtθ). Let Γ²(t, s) = E[²t − E(²t)][²t+s − E(²t+s)]0 be the autocovariance matrix at
lag s. The assumptions imply Γ²(t, s) = 0, s ≥ 1, and

Γ²(t, 0) =


λ1t + δ δ . . . δ
δ λ2t + δ . . . δ
...

...
. . .

...
δ δ . . . λMt + δ

 .
In addition to previous assumptions we add that yt−1 and ξt are independent. In the

binomial thinning operators of

At ◦ yt−1 =
Ã
α1t ◦ y1,t−1 =

y1,t−1X
i=1

ui1, . . . ,αMt ◦ yM,t−1 =
yM,t−1X
i=1

uiM

!0
,

the uij are assumed to be i.i.d. 0 − 1 random variables and independent of yt−1 and
²t, t = 1, . . . , T .

The mean of the M -variate Poisson AR(1) process (18) is

E (yt) = AtE (yt−1) + λt + δ1,

where λ0t = (λ1t, . . . ,λMt) and 1 an M column vector of ones. After some algebraic
manipulation of off-diagonal elements we can write the covariance matrix of (18) as

Cov(yt) = AtCov (yt−1)At + Γ²(t, 0).

Obviously, it is possible to conceive of other and potentially more useful parametrizations
for particular cases.

The h-steps ahead predictor of (18) takes the form

�yT+h|T =
hY
i=1

AT+iyT +
hX
i=1

(λT+i + δ1)
hY

j=i+1

AT+j

with AT+h+1 = I. The M -variate one-step-ahead prediction error

eT+h = yT+h −AT+hyT+h−1 − λT+h − δ1
has zero mean and unconditional prediction error variance

V (eT+1) = AT+1(I−AT+1)diag{E(yT )}+ diag{λT+1}+ δ110,
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which has a variance that is inßated by δ in comparison with the univariate case. The δ
is also the covariance between one-step ahead prediction errors.

The conditional one-step-ahead prediction error variance is useful for estimation pur-
poses and is given by

E(e0tet|yt−1) = At(I−At)yt−1 + diag{λt}+ δ110.

For this panel data model the conditional least squares (CLS) estimator minimizingPT
t=2 e

0
tet is directly applicable. In this case too, the covariance matrix estimator need to

be adapted for both heteroskedasticity and for the cross-covariances. Under time invariant
αi and λi, i = 1, . . . ,M , however, the λi and δ cannot be separately estimated. GMM
estimation is applicable with similar types of conditional moment restrictions as in the
univariate case. In addition, we may use the sample cross-covariance between cross-section
units as a useful restriction for δ.

8. Conclusions

In principle, it is straightforward to apply the estimators and test statistics to other
distributions than the Poisson. As long as the conditional mean structure is not changed
no changes need to be made. When the conditional mean contains additional parameters
one would expect that additional and/or changed conditional moment restrictions need to
be used to separately estimate additional parameters.

The CLS estimators behave relatively better than the GMM estimator for realistically
short time series lengths. There is some efficiency gain from using weighting to correct
for heteroskedasticity for CLS. The weights are determined by a general expression for
the conditional prediction error. Therefore, we can expect the estimator to be robust to
distributional misspeciÞcations as long as the predictor is well speciÞed.

For the estimation of the full panel data model related estimators can be considered.
Whether additional conditional moment restrictions are required for the estimation of
the δ parameter is an open issue. We will return to this in forthcoming empirical work.
We note that with a potentially large number of cross section units, it will be necessary
to look into feasible numerical solutions and into, say, sequential and conditional GMM
estimation.
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Table 1: Estimation results (t-values in parantheses) and variable deÞnitions.

Variable/Parameter CLS Weighted CLS

Survival Probability
Constant (β1) 3.6048 1.0810

(5.36) (0.02)
Gross ProÞt Margin (β2) -0.0550 -0.0261
(1950-72=100) (6.42) (82.69)

Mean Entry
Constant (γ1) 5.0507 4.6197

(8.32) (14608)
Gross ProÞt Margin (γ2) -0.0375 -0.0261
(1950-72=100) (6.08) (82.41)
GNP (γ3) -0.0012 -0.0017
(1900=100) (3.28) (5.41)
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Figure 1: Series yt (y, solid line), E(yt) (E, long dashed line) and ρ(t, 1) (ρ, dash dot dot
line) for scalar xt and zt (see Section 4 for explanations, note that β0 = −1, β1 = 1, γ0 = 1
and γ1 = 1 are used in generating the data).
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Table A: Bias of CLS and GMM estimators for true values β0 = −1 and -2, and β1 =
γ0 = 1.

True β0 β1 γ0 γ1
γ1 CLS GMM CLS GMM CLS GMM CLS GMM

β0 = −1; T = 50
-0.3 0.0524 -0.1325 0.0631 0.1289 0.0327 -0.0907 0.0011 -0.0477
-0.2 0.0572 -0.1007 0.0561 0.1262 0.0334 -0.0760 0.0015 -0.0354
-0.1 0.0717 -0.1894 0.0650 0.1605 0.0422 -0.1301 0.0037 -0.0295
0.0 0.0350 -0.1140 0.0658 0.1041 0.0322 -0.1041 -0.0044 -0.0303
0.1 0.0554 -0.1561 0.0633 0.1070 0.0304 -0.1175 0.0029 -0.0300
0.2 0.0210 -0.1618 0.0584 0.0753 0.0209 -0.1048 -0.0021 -0.0369
0.3 0.0074 -0.1588 0.0553 0.0646 0.0107 -0.1389 -0.0002 -0.0311

β0 = −1; T = 200
-0.3 0.0075 -0.0254 0.0102 0.0198 0.0006 -0.0223 -0.0019 0.0011
-0.2 0.0072 -0.0279 0.0104 0.0216 0.0025 -0.0226 0.0001 0.0034
-0.1 0.0093 -0.0332 0.0090 0.0228 0.0028 -0.0280 -0.0006 0.0025
0.0 0.0041 -0.0351 0.0090 0.0139 0.0025 -0.0311 -0.0008 0.0014
0.1 0.0161 -0.0300 0.0034 0.0141 0.0079 -0.0302 -0.0002 -0.0019
0.2 0.0163 -0.0328 0.0049 0.0134 0.0083 -0.0289 -0.0001 -0.0075
0.3 0.0056 -0.0403 0.0096 0.0253 0.0022 -0.0317 -0.0011 -0.0097

β0 = −2; T = 50
-0.3 0.0140 -0.2454 0.0373 0.1400 0.0341 -0.1134 0.0021 -0.0487
-0.2 0.0447 -0.2343 0.0269 0.1298 0.0513 -0.1085 0.0047 -0.0409
-0.1 0.0542 -0.2402 0.0231 0.1374 0.0522 -0.0996 -0.0006 -0.0401
0.0 0.0327 -0.2443 0.0379 0.1501 0.0555 -0.1012 0.0043 -0.0343
0.1 0.0554 -0.2007 0.0254 0.1032 0.0594 -0.1074 -0.0034 -0.0361
0.2 -0.0007 -0.1628 0.0326 0.0674 0.0333 -0.0901 -0.0044 -0.0414
0.3 -0.0115 -0.1902 0.0364 0.0783 0.0206 -0.0958 -0.0036 -0.0343

β0 = −2; T = 200
-0.3 -0.0022 -0.0361 0.0083 0.0186 0.0002 -0.0209 0.0009 0.0020
-0.2 0.0082 -0.0320 0.0037 0.0155 0.0043 -0.0265 -0.0011 -0.0010
-0.1 0.0066 -0.0383 0.0024 0.0186 0.0051 -0.0305 0.0011 0.0007
0.0 0.0096 -0.0361 -0.0001 0.0158 0.0062 -0.0386 0.0001 -0.0015
0.1 0.0066 -0.0494 0.0022 0.0191 0.0058 -0.0450 -0.0009 -0.0016
0.2 -0.0025 -0.0383 0.0097 0.0197 0.0013 -0.0316 -0.0008 -0.0086
0.3 0.0017 -0.0313 0.0097 0.0139 0.0018 -0.0296 -0.0001 -0.0103
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Table B: MSE of CLS and GMM estimators for true values β0 = −1 and -2, and β1 =
γ0 = 1.

True β0 β1 γ0 γ1
γ1 CLS GMM CLS GMM CLS GMM CLS GMM

β0 = −1; T = 50
-0.3 0.3301 0.3109 0.1367 0.1551 0.0389 0.0667 0.0071 0.0165
-0.2 0.3036 0.3464 0.1044 0.1942 0.0388 0.0579 0.0068 0.0158
-0.1 0.3506 0.3766 0.1314 1.0306 0.0400 0.5459 0.0060 0.0591
0.0 0.2699 0.3003 0.0856 0.1165 0.0389 0.0627 0.0050 0.0161
0.1 0.2311 0.2242 0.0786 0.1261 0.0403 0.0599 0.0043 0.0169
0.2 0.2129 0.2035 0.0761 0.0850 0.0403 0.0590 0.0040 0.0158
0.3 0.2602 0.1914 0.0934 0.1034 0.0458 0.7893 0.0040 0.0432

β0 = −1; T = 200
-0.3 0.0165 0.0173 0.0100 0.0120 0.0083 0.0116 0.0016 0.0028
-0.2 0.0205 0.0187 0.0104 0.0124 0.0083 0.0109 0.0014 0.0025
-0.1 0.0231 0.0201 0.0120 0.0130 0.0079 0.0099 0.0014 0.0026
0.0 0.0258 0.0218 0.0125 0.0128 0.0084 0.0106 0.0013 0.0028
0.1 0.0270 0.0227 0.0120 0.0142 0.0081 0.0104 0.0011 0.0029
0.2 0.0258 0.0229 0.0124 0.0146 0.0088 0.0101 0.0013 0.0035
0.3 0.0257 0.0257 0.0123 0.0202 0.0092 0.0105 0.0013 0.0036

β0 = −2; T = 50
-0.3 0.4089 0.4191 0.1420 0.1606 0.0534 0.0695 0.0094 0.0190
-0.2 0.4356 0.4083 0.1335 0.1600 0.0524 0.0576 0.0087 0.0187
-0.1 0.4392 0.3681 0.1362 0.1457 0.0560 0.0512 0.0073 0.0176
0.0 0.4835 0.4058 0.1451 0.1639 0.0533 0.0523 0.0053 0.0165
0.1 0.3599 0.3073 0.1086 0.1228 0.0484 0.0551 0.0046 0.0160
0.2 0.3506 0.2250 0.1153 0.0866 0.0447 0.0518 0.0043 0.0165
0.3 0.3017 0.2396 0.1126 0.0976 0.0464 0.0635 0.0046 0.0164

β0 = −2; T = 200
-0.3 0.0185 0.0187 0.0078 0.0086 0.0099 0.0118 0.0019 0.0027
-0.2 0.0207 0.0181 0.0080 0.0085 0.0090 0.0115 0.0017 0.0030
-0.1 0.0235 0.0200 0.0092 0.0094 0.0083 0.0113 0.0015 0.0032
0.0 0.0259 0.0213 0.0096 0.0089 0.0085 0.0113 0.0013 0.0032
0.1 0.0264 0.0242 0.0097 0.0103 0.0082 0.0117 0.0012 0.0032
0.2 0.0264 0.0251 0.0096 0.0110 0.0088 0.0098 0.0013 0.0037
0.3 0.0280 0.0241 0.0110 0.0130 0.0103 0.0097 0.0016 0.0040
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Table C: Bias and MSE of weighted CLS estimator for true values β0 = −1 and -2, and
β1 = γ0 = 1.

True β0 β1 γ0 γ1
γ1 Bias MSE Bias MSE Bias MSE Bias MSE

β0 = −1;T = 50
-0.3 0.0682 0.2608 0.0404 0.1077 0.0379 0.0324 0.0048 0.0054
-0.2 0.0772 0.2199 0.0348 0.0675 0.0382 0.0341 0.0037 0.0054
-0.1 0.0872 0.2831 0.0495 0.1000 0.0456 0.0382 0.0050 0.0053
0.0 0.0583 0.2453 0.0528 0.0770 0.0407 0.0370 -0.0037 0.0046
0.1 0.0670 0.2150 0.0549 0.0692 0.0343 0.0388 0.0033 0.0041
0.2 0.0477 0.1796 0.0455 0.0593 0.0301 0.0360 -0.0016 0.0034
0.3 0.0233 0.1790 0.0437 0.0613 0.0164 0.0363 -0.0007 0.0031

β0 = −1;T = 200
-0.3 0.0132 0.0164 0.0066 0.0089 0.0048 0.0073 -0.0005 0.0013
-0.2 0.0088 0.0185 0.0035 0.0093 0.0025 0.0075 -0.0002 0.0012
-0.1 0.0115 0.0201 0.0050 0.0106 0.0030 0.0069 -0.0011 0.0012
0.0 0.0128 0.0219 0.0065 0.0106 0.0076 0.0071 -0.0002 0.0011
0.1 0.0109 0.0239 0.0067 0.0112 0.0050 0.0075 -0.0016 0.0011
0.2 0.0118 0.0230 0.0010 0.0108 0.0082 0.0075 -0.0010 0.0011
0.3 0.0102 0.0183 0.0085 0.0098 0.0044 0.0069 0.0000 0.0010

β0 = −2;T = 50
-0.3 0.0427 0.2850 0.0156 0.0911 0.0409 0.0482 0.0063 0.0077
-0.2 0.0730 0.3400 0.0076 0.0972 0.0583 0.0495 0.0073 0.0071
-0.1 0.0729 0.3726 0.0109 0.1108 0.0575 0.0535 0.0002 0.0062
0.0 0.0545 0.3842 0.0244 0.1104 0.0589 0.0507 0.0044 0.0049
0.1 0.0715 0.3205 0.0141 0.0941 0.0617 0.0454 -0.0024 0.0044
0.2 0.0358 0.2441 0.0112 0.0762 0.0406 0.0392 -0.0039 0.0038
0.3 0.0183 0.2358 0.0206 0.0863 0.0299 0.0401 -0.0039 0.0038

β0 = −2;T = 200
-0.3 -0.0034 0.0164 0.0063 0.0066 -0.0013 0.0081 0.0005 0.0015
-0.2 0.0069 0.0184 0.0028 0.0072 0.0036 0.0077 -0.0008 0.0014
-0.1 0.0094 0.0204 0.0006 0.0082 0.0069 0.0071 0.0018 0.0012
0.0 0.0077 0.0234 0.0007 0.0089 0.0054 0.0076 0.0005 0.0012
0.1 0.0091 0.0229 -0.0006 0.0089 0.0066 0.0071 -0.0014 0.0010
0.2 0.0010 0.0224 0.0066 0.0083 0.0030 0.0075 -0.0007 0.0011
0.3 0.0042 0.0226 0.0051 0.0091 0.0021 0.0081 0.0000 0.0011
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Figure 2: Autocorrelations ρ(t, k), k = 1, 2, 3 (see Figure 1 for explanations).
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Figure 4: Sizes and powers of Wald test statistics for H0 : γ1 = 0 based on CLS (a) and
weighted CLS (b) when β1 = −2.
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Figure 6: The number of Swedish mechanical paper and pulp plants (solid line) and Þtted
values (dashed line).
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Figure 7: Estimated survival probability (αt, solid line) and mean entry (λt, dash dot dot
line).
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Figure 9: Mean residual life times for new mills starting in 1921.
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