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Abstract

The paper studies the integer-valued autoregressive model of order one and suggests
a specification for panel data. Test statistics against under- or overdispersion within
a generalized Poisson model are obtained. Predictors and prediction error variances
are given for univariate and multivariate models. The small sample performance of
maximum likelihood and new generalized method of moments estimators and tests are
evaluated and compared. An empirical illustration based on the number of firms in
sectors of the Swedish forest industry 1970-1992 is included.
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1. Introduction

In this paper we study the integer-valued autoregressive model of order one [AR(1) model].
The Poisson AR(1) model was first introduced by McKenzie (1985) and later discussed
by McKenzie (1988), Al-Osh and Alzaid (1987) and others. This pure time series model
closely resembles the Gaussian AR(1) model in terms of the first two moments. In other
respects the model is quite different, however. The Poisson distribution has a single pa-
rameter, which is equal to both the mean and the variance. If empirically, the variance
exceeds the theoretically expected variance we talk of overdispersion. Correspondingly we
may also talk of underdispersion when the empirical variance is smaller than the theoreti-
cally expected one. This issue has important empirical implications for interpretation and
for obtaining an appropriate covariance matrix, which in turn is important, for instance,
for testing purposes.

Regression models for time series count data are becoming increasingly often applied.
Different approaches were initially suggested by Zeger (1988), Zeger and Qagish (1986) and
Smith (1979). Recent work of Brénnés and Johansson (1992, 1994) and others suggest that
these approaches are empirically feasible. Only in the regression approach of Zeger and
Qagish (1986) is there an explicit lag structure. However, this is quite different from the one
considered here. In the other regression models the autocorrelation structure is assumed
to be due to a latent process. A different time series model is the so called DARMA model
of Jacobs and Lewis (1983). In the conclusion to this paper we will make some comments
on how the present AR(1) framework can accommodate explanatory variables as well.

In particular, we obtain generalized method of moment (GMM, Hansen, 1982) estima-
tors for both the AR(1) Poisson and the generalized Poisson (Alzaid and Al-Osh, 1993)
models. The generalized Poisson model has the desirable property of allowing for both
under- and overdispersion. Lagrange multiplier (LM) and Wald type test statistics in
the GMM domain are given against under- and/or overdispersion, when the alternative
hypothesis is an AR(1) generalized Poisson model. The obtained estimators and test
statistics are evaluated and compared by finite sample Monte Carlo experimentation. In
addition, the new GMM estimators are compared to maximum likelihood (ML) and condi-
tional least squares (CLS) estimators in the Poisson case. The latter two estimators were
for this case given and partly evaluated by Al-Osh and Alzaid (1987). Predictors and pre-
diction error variances are derived. For multivariate dependent AR(1) models for panel
data corresponding measures are derived for both the Poisson and generalized Poisson
cases.

The details of the basic models are outlined in Section 2. In Section 3 we consider
estimation, while testing against under- and overdispersion is considered in Section 4. The
design and results of small sample Monte Carlo experimentation are reported in Section
5. Section 6 provides predictors and prediction error variances. Section 7 introduces
the panel data AR(1) model. An empirical illustration based on the number of Swedish
forestry plants according to production type, 1972-1990, is reported in Section 8. Some
of these series manifest underdispersion. A few concluding remarks are made at the end
of the paper.



2. Models

Consider a stationary {y:} process with Poisson marginal densities. Both for simplicity
reasons and for reasons of future empirical work we restrict our interest to the autoregres-
sive model of order one [the AR(1) model]. At an arbitrary time ¢ we write

y=aoy_1+e¢, t=2...T. (1)

Here, the notation (cf. Steutel and van Harn, 1979) aoy = 3°Y_; u;, where u; is a sequence
of independent and identically distributed (i.i.d.) 0-1 random variables independent of y
with Pr(u; = 1) = . The aoy operator represents binomial thinning of y, such that each
of the y individuals either 'survives’ (u; = 1) with equal probability a or ’dies’ (u; = 0)
with probability 1 — . Under these assumptions it holds that

Elaoy) = Ey[yE(uily)] = aE(y)
Viaoy) = Vy[E(aoyly)]+Ey[V(aoyly)] =a’V(y) + a(l — a)E(y).

The ¢ is i.i.d. Poisson with mean A > 0 and independent of y;_1. For « € (0,1) and y;
discrete self-decomposable the AR(1) process is stationary (e.g., McKenzie, 1988).

The properties of the model have been detailed upon by Al-Osh and Alzaid (1987)
and for a slightly different parametrization by McKenzie (1988). In the present case both
the mean and the variance of the {y;} process is A\/(1 — ). It is easy to verify that the
autocorrelation at lag k is o, which obviously is restricted to be positive.

Extensions to more general ARMA models are discussed by McKenzie (1988) and
others. The model (1) remains of the same form for other distributions such as the
binomial, negative binomial or generalized Poisson (Alzaid and Al-Osh, 1993, McKenzie,
1986). The negative binomial allows for overdispersion while the generalized Poisson model
has the attractive property of allowing for both under- and overdispersion.

Therefore, we consider the generalized Poisson (GP) [see Consul (1989) for a detailed
treatment of the univariate GP model and its estimation] AR(1) model specification of
Alzaid and Al-Osh (1993). Instead of binomial thinning we now employ a quasibinomial
thinning operator, aw o y; 1. By this the probability to retain an element is increasing in
yi—1 for 8 > 0 and decreasing for § < 0. When y; 1 is GP distributed with parameters
A and 0 [GP(X,0); see eq. (9), below, for the density function| it follows that aoy;_1 is
distributed as GP(aX,6). When in addition ¢, is distributed as GP((1—a)X, 0) it follows
that y; has a GP (X, #) distribution. The GP model has moments; E(y:) = N /(1 — 6),
V(y:) = N /(1 —0)? and the autocorrelation at lag k is o¥. Underdispersion (over-) results
for < 0 (0 > 0), while the Poisson case arises for § = 0.

To make the GP compatible with the previous Poisson specification we let the €, process
have parameters A and 6, i.e. A = (1 —«))'. For the chosen specification the mean of the
process is A/[(1 — «)(1 — 6)] = X'/(1 — 0), which for § = 0 reduces to that of the Poisson
model.

For the negative binomial AR(1) model some of the distributional features are treated
by McKenzie (1986) and Al-Osh and Alzaid (1993). For a model specification compatible
with the Poisson model in (1) with E(e;) = A and V(e;) = A + 02A%. We obtain E(y;) =
M (1 —a), V(y) = [A+ Ma +02))]/(1 — a?) with of the autocorrelation at lag k.



3. Estimation

The estimation of o and A in the stationary Poisson AR(1) case by conditional least squares
(CLS) and maximum likelihood (ML) estimators was studied by Al-Osh and Alzaid (1987);
see also Jin-Guan and Yuan (1991) and Ronning and Jung (1992). In this section we
also introduce the new generalized method of moment (GMM) estimator and extend this
estimator to the GP AR(1) model.

3.1 Conditional Least Squares

The conditional mean of y; given y;_1 is for the Poisson model given by

E(yelys—1) = aye—1 + X = g(aby), (2)

where ¥, = (a,\)" is the vector of unknown parameters to be estimated. The CLS
estimator minimizes the criterion function

T

="yt — g(¥1))?, (3)

t=2

which yields the estimators

Zthz YtYt—1 — (ZtT=2 Yt ZtT=2 yt-1)/T

a =
ZtT:2 y152—1 - (Z?:2 ytfl)Q/T
A =

(Zyt — @Zytq)/T

In the GP model the conditional mean equals ay;—1 + A/(1 — ). This reveals that A
and 6 can not be estimated separately, unless additional information is incorporated for
the CLS estimation problem. For the negative binomial model the conditional mean is of
the form (2), indicating that o can not be estimated from the conditional mean.

3.2 Maximum Likelihood
For a fixed initial value y; the conditional log-likelihood function may be written
T
1) = Zlog Pr(ye|yi—1), (4)
t=2

where for the Poisson model (cf. Johnson and Kotz, 1970, ch. 11 and Al-Osh and Alzaid,
1987)

m )\yt i Vi1 ) )

Pr(yt|yt 1 - eXp E y Z Z_ o’ (1 - a)yt_liz = 27 s 7T (5)

: —
=

is the conditional density for given y; 1 and where m = min(y; 1,y¢). While the condi-
tional ML estimator maximizes (4), the exact ML estimator maximizes

U(tp1) = bi(2py) +log Pr(yy), (6)



where

Prn) = |72 e [, (7)

1—a] ! 1 -«
is the steady state density.

For the GP model, with E(e;) = N /(1 — 6), the appropriate expressions (Alzaid and
Al-Osh, 1993) are given by

“ oy X N +i6 Nt (g —ip]" T
Pr(yt|yt71) — Z < yt' 1 > o l ? 2 ‘| [ (yt 1 Z) ]

P ? N +y—16 [N +yi—16 N +yi—10
X NN 4+ 0(ye — )] " Lexp[—N — NO(ye — )]/ (ye — )" (8)
Pr(y1) = NN +0y1)" Texp[—(X + 0y1)] /1!, 9)

where X = (1 — )X\ and the parameter vector is ¢y = (X, a, 8).1 With § = 0 expressions
(8)-(9) reduce to those in (5) and (7), when in the latter X' is replaced by X .

To obtain ML estimates using (6) a numerical maximization algorithm has to be em-
ployed. The conditional density (8) of the GP model is quite complex as will the derivatives
required for ML estimation be. Wald and Lagrange multiplier tests are therefore analyti-
cally and numerically difficult to obtain. The same will hold true for the negative binomial
model.

3.3 Generalized Method of Moments

In this subsection we consider the use of the GMM estimator of Hansen (1982) for our
AR(1) purposes. Two approaches to GMM estimation can be considered. First, we may
employ unconditional moment restrictions based on the stationary distribution to form
the estimator. The second approach is based on conditional moment restrictions (e.g.,
Newey, 1985, Tauchen, 1986) and can be seen as an extension to the CLS estimator.
Initial experimentation using unconditional moment restrictions suggested that the small
sample properties are not at all favourable. Therefore, we only consider the conditional
GMM estimation problem.

To avoid non-uniqueness due to a surplus of possibly informative moment restrictions as
well as to ’increase efficiency’ the GMM estimator is useful, though it may be numerically
more involved than method of moment estimators. The GMM estimator minimizes a
quadratic form

q=m(p) W 'm(v), (10)

where m()) is the vector of moment restrictions. Subject to mild regularity conditions
(e.g., MacKinnon and Davidson, 1993, ch. 17) the estimator of ¥ is consistent and asymp-
totically normal for any symmetric and positive definite matrix W, such as the identity
matrix I. The estimator is efficient when W is the asymptotic covariance matrix of m(Qp)
To obtain W, ¢ can in a first step be minimized using say the identity matrix I for W.
For a second step the consistent estimates ¢ from step one are used to form W.

'For # < 0 the GP density in (9) is in fact truncated. Since (9) is the marginal density for any ¢, the
truncation can be expressed as Pr(y:) = 0 for y¢ > k. For A’ > 0, 6 is restricted by max(—1, -\ /k) <6 < 1
for k > 4. Consul (1989, ch. 2) gives additional details and a discussion about the small effect of neglecting
the truncation.



For past observations yi,...,¥y; 1, the conditional mean of y; in the Poisson AR(1)
model is given in (2) and the one-step-ahead prediction error e; = y; — ayr—1 — A is
the important part of (3), see also Section 6, below. The normal equations of (3) are
empirical moment restrictions; T 1L ye; = 0 for A and T-1 3] 516, = 0 for a,
with corresponding theoretical unconditional moments E(e;) = 0 and E(y_1e;) = 0.
These unconditional moments are equal to conditional ones, since for any function A(:),
E(h(yi-1)er) = Ey[E(h(ye—1)eddye1] = Eyh(ye—1)E(edly—1) = Eyh(yi—1) -0 = 0. The
CLS estimator can therefore be interpreted as a condtional GMM estimator. In addition,
the numbers of unknowns and restrictions are equal, and W is equal to the identity matrix
of order two, Is.

Additional moment restrictions are available. For instance, it can be proved that both
the conditional and unconditional expectations of e;e; 1 are equal to zero. From Alzaid
and Al-Osh (1988) the general result for stationary integer-valued processes of order one
V(elye1) = Ellye — Eelye 1))2lye 1] = a(l —a)ye 1+ V(er) can be seen to be equal to
E(e?|yt—1). This restriction proves to be most useful, in particular, for the GP model.?
These and possibly other conditional moment restrictions can be used for GMM estimation.

The asymptotic covariance matrix W can, in principle, be formed either from initial
consistent estimators of the parameters and an analytical expression or from these esti-
mators and the sample covariance matrix of the restrictions. The latter is based on the
widely used consistent Newey and West (1987a) estimator

P .
S I\
W=T 1——)I'; + T 11
o 0 I T (1)
where
A T ~ ~
]--‘jzj_’i1 Z mt(¢)lmt—j(¢)7 j:0717"'7p7
t=j5+1

and p has to be given. The p corresponds to the order of an MA(p) process. Therefore,
for the present AR(1) process we expect that p should be chosen large for large o values.
The estimated asymptotic covariance matrix of the GMM estimator based on W is

Cov(ih) = %[G’W*lc;rl, (12)

where the G matrix has rows GJ = 9m;(v);/d%' evaluated at 1.

As part of the Monte Carlo experiments reported below, we have an interest in studying
the impact of the number of restrictions as well as the impact of W versus I. Evenif W = I
in (10) is enforced we need to have the asymptotic covariance matrix W of the moment
restriction vector to obtain the appropriate covariance matrix of the parameter estimates.

4. Specification Testing

In this section we consider specification testing against under- and overdispersion when
under the null hypothesis we have an AR(1) Poisson model and under the alternative the
generalized Poisson model. The test statistics are based on the GMM approach. The

>The dependence on y;—1 makes this model different from the Gaussian autoregressions with their
constant variances.



Lagrange Multiplier (LM) test based on likelihood theory of Hp : @ = 0 vs. Hy : 0 £ 0 is
too complex analytically as well as numerically to be of empirical interest.

To test against under- or overdispersion using the GMM approach we may apply anal-
ogous techniques as used within likelihood theory (Newey and West, 1987b). A Lagrange
multiplier (LM) or score statistic is analytically and numerically simple when under H 4
the numbers of restrictions and unknown parameters are equal (e.g., Davidson and MacK-
innnon, 1993, ch. 17). The LM statistic is then of the form

LM = T m'(4hg) [W ()]~ m(thy), (13)

where ¥ = (&, \,0 = 0) is a GMM estimator of 1, under Hy and W is estimated using
these estimates. Asymptotically, LM is distributed as a x?(1) variate.
For a model estimated under Hy, i.e., under the unrestricted GP AR(1) model, the

application of the Wald statistic is straightforward. We simply have to compare s / V(@),
where V(0) is the appropriate diagonal element in (12), to a x*(1) distribution.

5. Small Sample Performance

The CLS, exact ML and GMM estimators are compared for the Poisson AR(1) model
in a small Monte Carlo experiment replicating and extending the study of Al-Osh and
Alzaid (1987). To generate the data we assume a = 0.1,0.3,0.5,0.7 and 0.9 with A =
1 and 5. Due to the specification of the model we then obtain the means of y; as
10A/9,10A/7,2X,107/3,10X for = 0.1,...,0.9. To obtain a stationary series we set
y1 equal to the stationary mean \/(1 — «) and discard the first 150 generated observa-
tions. Two sample sizes, T" = 50 and 200, are employed, and the number of replications is
1000 at each design point. For the exact ML estimator we employ reparametrizations such
that A = exp(¢) and @ = 1/(1 + exp(n)) and maximize with respect to the unrestricted ¢
= log()\) and 7 = log(a~! —1). The GMM estimator is evaluated for the GP AR(1) model
in the case of # = 0, i.e., the data is generated from a Poisson AR(1) model. The sizes of
the LM and Wald statistics of Hyp : 8 =0 vs. Hy : 0 # 0 are compared and evaluated.

The bias and MSE results for the estimators in the Poisson case are given in Table 1.
Both the biases and MSEs of the CLS and ML estimators of « are small. The measures
are smaller for larger sample sizes, and as expected, the exact ML estimator has smaller
MSE than CLS. The bias of the CLS estimator of « is larger for A = 5. The unrestricted
CLS estimator yields a substantial fraction of & estimates outside of the [0, 1] interval for
small and large values on «. As expected there is a high negative correlation between the
estimators of a and A for large @. On comparison with the results of Al-Osh and Alzaid
(1987) the present study essentially confirms their conclusions. The MSE of the CLS
estimator of X increases with a and is larger for A = 5, when the variance of the process is
larger. The increases are much smaller for the ML estimator. With respect to A, however,
it is found that the performance of the CLS estimator varies with A or equivalently with
the mean or the variance of the {y;} process.

The bias and MSE results for the Poisson GMM estimator are based on W = I as
well as Wy. (The notation Wp is used to indicate the number of terms p of the Newey
and West (1987a) estimator in (11)). The four conditional moment restrictions are the
two normal equations of the CLS estimator (the GMM reduces to the CLS estimator when
W =1L), E(e?ly; 1) —a(l —a)y; 1 — A =0 and E(eie; 1]y;_1) = 0. There is no gain of



using W for the smallest sample size T' = 50. It is for the larger a-values that the GMM
estimator has smaller MSE than CLS. For A we again note that the GMM estimator based
on I, does, at least, equally well as the one based on W,. GMM has substantially smaller
MSEs for the largest o values.

In some additional experiments performed to study the robustness of the GMM esti-
mator with respect to the choice of moment restrictions the conditional and unconditional
prediction error variance restrictions were compared. The reported GMM estimator has
mostly much smaller MSEs, but for T' = 50 and « small the one based on the unconditional
variance is better in the MSE sense.

In summary, the ML estimator has the smallest MSEs and for short time series there
is a gain of using the GMM estimator as compared to CLS only when « is relatively large.

For the GP AR(1) model the conditional moment restriction due to the conditional
variance proved crucial for getting around the problem with nonuniqueness arising from
the ratio A/(1 — 0) in the conditional mean. Table 2 presents results for the case of
W =14, Wg and W4 and T = 50 and 200, for the four conditional moment restrictions
T e =TSy —aye 1 =M1 =0)] =0, T X e 1 =0T T e} —
a(l—a)y;_1 — N1 =603 =0and T3], eres_1 = 0.

On comparison, there appears to be little reason for using W instead of W = 14,
whether W is based on p = 4 in (11) or p = 2. A general conclusion seems to be that
for large « values (or large E(y:)) biases and MSEs of, in particular, A are large in an
absolute sense.

In Table 3 sizes are reported for the LM and Wald test statistics of Hp : § = 0 against
a two-sided alternative for a nominal size of 0.05. For small T' the obtained sizes are too
large. Size properties improve as T increases. For the Wald statistic there is no clearcut
indication of whether p = 2 or 4 is to be preferred.

6. Prediction

Consider the prediction of a future value yr,p given that we have observed the series up
through time T, i.e., y1,...,yr is observed. By repeated substitution we may write the
future values of the process

h
h h—i
Yr+h = @ OyT+E oo eryy, h=1,2,...,
i=1

which should be interpreted as an equility in distribution.
From this we obtain the h-step ahead predictor for the Poisson model as

Jrinr = Elrenlys, .- yr) ="yr + A1+ a+ ..+

A A
- o= (14

—

= ah’

where in the final step the equality (1+a+...+a” 1) = (1—a”)/(1 - ) has been used.
The term in brackets measures the deviation of the process from the mean at time 7T'. As
h goes to infinity and for a < 1, the first part goes to zero and we hence find that the
predictor approaches the mean of the process. As a — 1 the predictor approaches yr,
which is to be expected on comparison with a random walk model.



The prediction error is ern = yryn — Jpqnp- 1t follows that E(erypn) = 0, for any
h > 0, i.e., the predictor is unbiased. The prediction error variance at lead h = 1 is
a(l —a)
V(iery1) = E [(a oyr — ayT)ﬂ +FE [(eT_H — )\)2} = ol =a)A +A
A

1—«

— 1_a[1—a2}, (15)

where the results summarized in Section 2 are used to obtain the first part of the third
expression. Proceeding in a similar way it can be shown that the prediction error variance
at an arbitrary lead h > 0 can be written on the related form
A

1-a
Note that the prediction error variance increases with the length of the forecast horizon
h. As h — oo, the variance approaches an upper limit of A\/(1 — ), which is the variance
of the process.

The expressions for the GP AR(1) model with E(e;) = A/(1—6) and V(&) = A/ (1—6)3
are given by

Vierm) = 7= [1—o™]. (16)

N A A
L [ ey Il s ey

al\

V(6T+h) = m(l—a—{—az—as—{—...—a%_l)
+(1_9)3(1—}—&2—{—...—{—&2(’%1))
_ aA 1—a2h+ A 1 —a2h—1
C (1-00-a) 1+a  (1-03 1-—a

7. Panel Data

Consider a panel of M cross-section units and 7" time periods. We may write an M-variate
AR(1) model for integer-valued data as

U1 aq 0 Ce. 0 Y1 €1
y'z _ 0 a ... 0 S| v N 6'2 7 f—o T
0
Ym ¢ 0 0 03V Ym i1 EM ‘
or as
yt=Aoyt 1+ €. (17)

The parameters are different for different cross-section units and we let the dependence
between units be generated by

€} 1
€5 1 .

€ = : +& | T & + & 1.
v/, 1



In the Poisson case the €}, i =1,...,M, t=1,...,T, are independent Poisson variables
with parameters X\;;, ¢ = 1,..., M, and the scalar &, t = 1,...,T, is independently
Poisson distributed with parameter ¢ (e.g., Johnson and Kotz, 1969, ch. 11). Let I'c(s) =
Ele; — E(€t)|[€r+s — F(€trs)] be the autocovariance matrix at lag s. The assumptions
imply T'(s) =0, s > 1, and

A+ 1) 1)
0 X+6 ... 0
0 1) D VY e )

In addition to previous assumptions we add that y;—; and &; are independent. In the
binomial thinning operators of

Y1 ym !
Aoyp 1= aloyl:Zuila---aaﬂloyﬂlzzuiM )
i=1 i=1 t—1

the u;; are assumed to be i.i.d. 0 — 1 random variables and independent of y; 1 and
€¢, t= 1,...,T.
The mean of the M-variate Poisson AR(1) process (17) is

E(y:)=1-A) " (A +61),

where X' = (Ag,...,Ap). After some algebraic manipulation we obtain the covariance
matrix of (17) as

()\1+5)/(1—a1) 5/(1—0&10&2) 6/(1—a1aM)
6/(1—0[10[2) ()\2—{-6)/(1—0[2) 6/(1—0[20[1\4)
Cov(y:) = . .
6/(1—a1aM) 6/(1—a2aM) ()\M—i—(S)/(l—Oz]v[)

Obviously, it is possible to conceive of other and potentially more useful parametrizations
for particular cases.
The h-steps ahead predictor of (17) takes the form

Yrinr = Alyr + (I TA+. .+ A’H) (A +61)

and the M-variate one-step-ahead prediction error is ¢, = y; — Ay;_1 — A — 61. The
one-step ahead prediction error variance is

(M +8)(1+a) ) )
1) Ao+ 0 Q@ 1)
Vier) = : (A2 + ):(l-i- 2) ] : 7

which has a variance that is inflated by ¢ in comparison with the univariate case, cf. (15).
The ¢ is also the covariance between one-step ahead prediction errors. For the general
h-steps ahead prediction error covariance matrix we obtain, for A > 1,

V(ersn) = [AMI—AM] E(yr) + Zh: (A" + sAP=T11 AR
i=1



where A =diag(\).

For this model type the conditional least squares (CLS) estimator is directly applicable,
but A\, = 1,..., M, and § cannot be separately estimated by this estimator. A CLS
estimator ¢ = (diag (A)’, (XA 4 61)) is obtained as

T
1) = arg min Z ejer,
Vo=

while to estimate all parameters separately, for instance, E(e:e}|y;—1) can be used to
obtain a feasible conditional GMM estimator.

8. Empirical Illustration

To illustrate, we consider four short, annual industry series in the Swedish paper and pulp
industry, 1972 — 1990. The series, Mechanical, Sulphate, Sulphite and Paper, represent
the number of plants and are exhibited in Figure 1. For all series there appears to be slight
negative trends. In terms of the Poisson AR(1) model this graphical evidence suggests
that either there is a small @ and a large A (young plants) or a larger o but a small X (old
plants). The latter interpretation is the more reasonable one in view of the capital intensity
of this industry. Also, there appears to be little variation in most series suggesting under-
rather than overdispersion.? In view of this, the generalized Poisson model appears an
interesting alternative. We anticipate negative estimates of 6§ for, at least, the Mechanical
and Sulphate series. Note that 6 < 0 indicates that the probability of exit increases with
the stock of plants y;_1.

In model terms the number of entering firms in a given time period can be seen as
arising from an unobservable and random number of potential entrants x;, who decide
to enter or not to enter. We may write ¢, = > ;' ziz. Here, z;; = 1 if the ith potential
entrant chooses to enter and 0 otherwise. Let Pr(z;; = 1) = §. Under an i.i.d. assumption
on potential entrants and a Poisson (parameter 1) assumption on x; it holds that € is
Poisson distributed with parameter A = nd. If at time ¢t — 1 there are no firms, the number
of firms at time t will be €. In the period from ¢ to ¢t + 1 another €, firms will enter.
On the other hand, the number of firms at time ¢, y; = €, will be reduced by the number
of exiting firms. If the probability of exiting is constant across firms and time periods,
1 — a , the number of remaining firms is denoted aoy; = i’tzl uit. The uy are again i.i.d.
0-1 random variables with Pr(u; = 1) = «. This operation represents binomial thinning
and yields a Poisson variable with mean ayu, where p is the mean of the stationary {y;}
process.

In Table 4 estimates of CLS, ML and GMM estimates of o and X are given for both
the Poisson and generalized Poisson models. The ML estimator is restricted to not fall
outside the permissible parameter space. No parameter restrictions are employed for the
CLS and GMM estimators. The )\ is negative in two instances for CLS and in one instance
for the GMM for the GP model. The LM and Wald statistics of § = 0 versus € # 0 in the
GP AR(1) model do not reject the null hypothesis for any of the series. In terms of 0 it
is negative and large only for the Mechanical production series.

3For Mechanical (mean = 22.5, standard deviation = 2.3), Sulphate (28.4, 3.5), Sulphite (17.2, 10.3)
and Paper (58.9, 6.3).

10



Treating the series as a panel with different o; and \; yields 6 = 0.148 when parameters
are estimated by CLS.

9. Concluding Remarks

It is a main attraction of the present model type that it can be extended in several ways.
In other studies of firm entry or exits these are studied separately. The probability of exit
1 — a can be made dependent on explanatory variables, using say, a logistic distribution
function. Estimation of such parametric forms can then give an estimated time profile
of past exits, when such are hard to observe directly. Obviously, the ex ante predictive
performance may improve as well. In an analogous way the A parameter characterizing
entries may also be made, say, an exponential function of explanatory variables. Initial
attempts in these directions for the above short time series suggested that these are feasible
approaches.

In view of the results from the Monte Carlo experiments the series lengths in the
empirical illustration seem short for strong inferences of parameters, etc. In a future
study paralelling the one of Mayer and Chappell (1992) longer series will be used. Another
alternative of gaining degrees of freedom is to use panel data. In this case a restrictive
parametrization can often be estimated even with very short time series.

While the model type has been illustrated by firm stock data, its applicability is
obviously of wider interest for the empirically oriented economist. Other fields that share
features with the firm stock setting include population size with migratory movements
and number of unemployees served by a small labour exchange agency. The strength of
the model comes out when the observed integer-valued counts are small. For large counts
one may expect conventional time series models to do equally well.
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Figure 1: Number of Mechanical, Sulphate, Sulphite and Paper plants in Sweden, 1972—
1990.
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Table 1: Biases and MSEs (x10) of ML, CLS and GMM (GMM; for Iy and GMMyy for
Wy) estimators, T = 50 and 200.

A=1 A=5
o ML  CLS GMM; GMMw ML CLS GMM; GMMw
Bias(&), T =50
0.1 0126 0005 0152  -0.291 0.074 0704 0251  -0.650
0.3 -0277 -0.236  -0.057  -0.412 -0.147 0630 0224  -0.268
0.5 -0210 -0.309 -0.028  -0.182 -0.187 0478 0107  -0.060
0.7 -0.134 -0.392 -0.049  -0.010 -0.068 0493  0.068 0.144
0.9 -0.039 -0.283 -0.010 0.050 -0.016  0.388  0.014 0.071
Bias(&), T' = 200
0.1 -0.016 -0.025  0.012  -0.269 -0.022 0164  0.095  -0.382
0.3 -0.025 -0.033  0.066  -0.183 -0.063 0127 0071  -0.214
0.5 -0.072 -0.072  0.004  -0.096 -0.067 0111 0013  -0.078
0.7 -0.047 -0.124 -0.022  -0.008 -0.015 0109  0.012 0.034
0.9 -0.009 -0.100  -0.002 0.021 -0.008  0.092  0.010 0.012
MSE(a), T = 50
0.1 0.139 0190  0.260 0.281 0.133 0201  0.345 0.351
0.3 0.186 0.191  0.188 0.316 0179 0179  0.209 0.333
0.5 0121 0161  0.111 0.172 0.110 0117  0.107 0.182
0.7 0.051 0123  0.050 0.065 0.042  0.067  0.042 0.057
0.9 0.006 0037  0.006 0.007 0.004  0.019  0.005 0.006
MSE(&), T = 200
0.1 0045 0.050  0.057 0.066 0.041  0.048  0.067 0.078
0.3 0.043 0052  0.046 0.065 0.041  0.046  0.049 0.072
0.5 0.031 0044  0.029 0.041 0.025  0.036  0.030 0.031
0.7 0.012 0029  0.013 0.014 0.010  0.024  0.011 0.011
0.9 0.001 0011  0.001 0.001 0.001  0.005  0.001 0.001
Bias()\), T' = 50
0.1 -0.153 -0.222  -0.359 0.006 -0.362  -4.826  -1.710 3.552
0.3 0350 0068 -0.149 0.179 1.025  -5.732  -2.037 1.520
0.5 0365 0369 -0.236  -0.189 1.910  -5.848  -1.574  -0.011
0.7 0248 0885 -0.317  -0.472 1.056  -9.192  -1.525  -2.787
0.9 0163 2242 -0401  -0.827 0.788 -20.115  -1.225  -3.907
Bias(}), T' = 200
0.1 0.004 -0.016 -0.071 0.185 0.138  -1.139  -0.728 2.043
0.3 0051 -0.041 -0.199 0.084 0.352  -1.330  -0.786 1.330
0.5 0.094 0059 -0.070  -0.029 0.589  -1.428  -0.251 0.556
0.7 0.111 0309 -0.063  -0.134 0.238  -2.007 -0.327  -0.649
0.9 0072 0918 -0.078  -0.269 0.339  -4.769  -0417  -0.876
MSE(}), T = 50
0.1 0366 0418  0.634 0.621 4934  7.398 12917  11.853
0.3 0552 0509  0.674 0.844 10.122 10303 12590  18.756
0.5 0.567 0690  0.673 0.790 11.543  12.096  12.069  18.759

0.7 0564 1.245  0.661 0.755 11.950  19.387  13.084  16.682
0.9 0.545 3.036  0.601 0.744 11.086  47.918 11433  14.398
MSE(\), T' = 200

0.1 0.097 0.100 0.154 0.126 1.529 1.723 2.592 2.581
0.3 0122 0.141 0.163 0.171 2.273 2.553 2.886 3.771
0.5 0.143 0.196 0.182 0.182 2.687 3.691 3.313 3.266
0.7 0142  0.320 0.182 0.175 2.972 6.833 3.270 3.175

0.9 0139 1.078 0.162 0.164 2.757  13.578 2.787 3.067




Table 2: Biases and MSEs (x10) of GMM estimators of GP model with W = Iy (top), W,
(middle) and Wy, T' = 50,200 (bottom). The left part of the table corresponds to A =1

and the right part to A = 5.

A=1 X=5 A=1 X=5
& I 4 W4 W2 L 4 W4 W2 I 4 W4 W2 I 4 W4 W2
Bias(&), T = 50 MSE(&), T = 50
0.1 -0.18 -0.29 -0.30 -0.26 -0.36 -0.38  0.22 0.18 0.18 023 018  0.18
0.3 -0.37 -0.62 -0.64 -0.25 -0.51 -0.54 024 025 025 026 024 025
0.5 -0.42 -0.66 -0.67 -0.27 -0.56 -0.57 022 024 025 026 022 024
0.7 -0.50 -0.60 -0.62 -0.17 -0.52 -0.52 020 0.19 019 025 019 020
0.9 -0.31 -0.70 -0.67 -0.05 -0.42 -0.50  0.07 0.14 013 002 1.18  0.06
Bias(a), T = 200 MSE(&), T = 200
0.1 -0.06 -0.22 -0.22 -0.07 -0.21 -021  0.06 005 0.05 005 005 005
0.3 -0.08 -0.24 -0.23 -0.05 -0.23 -020 005 006 006 006 006  0.06
0.5 -0.12 -0.24 -0.23 -0.06 -0.18 -021  0.06 005 0.06 006 005  0.05
0.7 -0.11 -0.19 -0.18 -0.03 -0.18 -0.16  0.05 004 004 006 004 004
0.9 -0.10 -0.13 -0.13 -0.03 -0.18 -0.15  0.03 0.02 0.02 001 002 002
Bias(A), T = 50 MSE(\), T = 50
01 049 053 053 305 3.8 395 076 068 067 1331 1203 11.89
0.3 0.84 123 1.27 405 696 669  1.27 132 127 30.64 3039 29.77
0.5 1.81 206 1.93 7.60 946 893 315 3.01 289 80.80 6839 72.34
0.7 506 151 1.62 1855 7.90 9.14 17.22 7.56 7.87 349.59 194.19 186.92
0.9 22.35 1.06 3.04 14.25 179.31 194.98 175.30 194.21 158.52 223.09 10680.9 12615.4
Bias(}), T = 200 MSE(}), T = 200
01 013 029 030 079 178 170 015 015 015 292 309 295
0.3 029 044 053 095 272 254 028 028 030 613 643  6.54
0.5 040 084 074 126 348 391  0.63 057 058 1524 1400 13.27
0.7 094 142 1.19 362 7.61 699 207 153 142 5549 4354 4132
0.9 7.01 10.70 2.50 8.55 39.61 33.37 3597 254.66 9.51 115.02 872.67 904.90
Bias(8), T = 50 MSE(#),T = 50
0.1 -0.28 -0.35 -0.35 -0.29 -0.38 -0.39 015 0.15 015 015 015  0.15
0.3 -0.30 -0.45 -0.47 -0.32 -0.60 -0.58  0.24 026 024 028 030 029
0.5 -0.65 -0.75 -0.64 -045 -0.55 -046 055 066 070 068 067  0.70
0.7 -1.86 0.02 -0.04 -1.00 0.08 -0.15  3.28 241 247 296 244 217
0.9 -9.06 1.03 0.15 -1.19 -16.01 -17.50  28.23 49.92 35.62 151 82.83 94.09
Bias(f), T = 200 MSE(f), T' = 200
0.1 -0.08 -0.12 -0.12 -0.09 -0.13 -0.12  0.03 0.03 0.3 003  0.03 003
0.3 -0.15 -0.23 -0.26 -0.10 -0.23 -0.23  0.06 005 0.06 006 006  0.06
0.5 -0.14 -0.42 -0.33 -0.05 -0.27 -0.30 012 012 012 012 011  0.11
0.7 -0.28 -0.63 -0.51 -0.13 -0.66 -0.60 037 031 032 046 036 033
0.9 -2.39 -486 -0.82 -0.59 -3.49 -286  6.00 5449 261 089 701 681
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Table 3: Sizes of LM and Wald (W, and W) test statistics. Nominal size is 0.05.

A=1 A=5
o LM Wy Ws LM W, Wy
T =50
0.1 0.104 0.140 0.116 0.135 0.134 0.101
0.3 0.094 0.146 0.120 0.170 0.179 0.167
0.5 0.141 0.178 0.164 0.158 0.187 0.164
0.7 0.154 0.148 0.116 0.177 0.169 0.143
0.9 0.203 0.105 0.090 0.217 0.059 0.043
T =200
0.1 0.080 0.072 0.066 0.101 0.076 0.073
0.3 0.086 0.090 0.099 0.097 0.088 0.096
0.5 0.094 0.110 0.119 0.082 0.120 0.099
0.7 0.089 0.081 0.074 0.105 0.120 0.101
0.9 0.104 0.024 0.033 0.124 0.011 0.009

Table 4: ML, CLS and GMM (W) estimates of Poisson and generalized Poisson AR(1)
models. GP-GMM and P-GMM correspond to generalized Poisson and Poisson, respec-
tively.

Production Estimator & A 6 LM/Wald

ML 0.98 0.51

Mechanical CLS 0.81 3.98
P-GMM 0.96 0.26 3.16
GP-GMM 0.96 2.48 -4.40 -0.02
ML 0.98 0.66

Sulphate  CLS 1.00 -0.50
P-GMM 0.97 0.20 2.42
GP-GMM 0.98 0.16 0.15 0.02
ML 0.90 1.88

Sulphite CLS 0.92 -0.18
P-GMM 0.89 0.23 0.54
GP-GMM 0.93 0.05 1.21 0.95
ML 0.97 1.84

Paper CLS 0.98 0.13
P-GMM 0.97 0.86 0.58
GP-GMM 0.99 -0.11 0.66 0.55
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