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Abstract

This study estimates the causal impact of the recent years’ high electricity prices
on electric vehicle (EV) adoption. Utilizing Swedish registry data and leveraging
regional discontinuities in electricity prices, I demonstrate that higher electricity
prices reduce EV demand, but also the demand for combustion-engine vehicles.
Additionally, the response to electricity prices varies across different types of EVs
and socio-economic groups. Based on these findings, I explore a counterfactual
policy that reduces electricity prices for EV buyers, and show that under plausible
assumptions, this policy is less cost-effective in boosting EV demand compared to
subsidies for EV purchases or charging infrastructure.
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1 Introduction

The transition to electric vehicles (EVs) represents an important shift in the global effort
to reduce greenhouse gas emissions and combat climate change. As governments and
policymakers worldwide implement measures to promote EV adoption, understanding
the factors that influence consumer demand for these vehicles is increasingly critical.
Among these factors, electricity prices may play an important role, impacting both
the operating costs of EVs and the overall attractiveness of switching from traditional
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internal combustion engine vehicles. High electricity prices also reduces the purchasing
power of households, since they face higher expenditure for electricity use at home.

While numerous studies have examined the impact of purchase incentives (e.g.,
Muehlegger and Rapson, 2022; Singh et al., 2020), access to charging infrastructure
(e.g., Springel, 2021) and environmental concerns on EV adoption (e.g., Carley et al.,
2019), the specific influence of electricity prices on consumer decisions has not been
thoroughly investigated. This research gap is particularly concerning given the recent
reports of a slowdown in EV uptake across Europe1, more or less coinciding with a sig-
nificant rise in electricity prices in most European countries during the last five years.

In this paper, I leverage comprehensive Swedish registry panel data to analyze the
responsiveness of EV demand to the recent years’ electricity price shocks, and I analyze
heterogeneity in price responsiveness in several dimensions. This rich dataset provides
detailed information on vehicle registrations and car characteristics, electricity prices
and socio-economic characteristics of consumers, allowing for a precise examination
of consumer behavior in response to varying electricity costs. Notably, Sweden leads
in EV adoption, supported by progressive policies, environmental consciousness, and
substantial charging infrastructure investments. As shown in Figure 2, EVs (including
plug-in hybrids) became the most common fuel type among new cars in 2021. Given
Sweden’s similarities with other developed nations, this high EV penetration provides
valuable insights for other countries aiming to increase EV adoption.

The identification strategy I use exploits the fact that the Swedish electricity market
since 2011 is divided into four distinct price areas (see Section A in the Appendix
for details). This unique market structure, found only in Sweden, Norway, Denmark,
and Italy, creates price discontinuities at the borders of these areas. These spatial
discontinuities results from regional variations in demand and generation mix, together
with constraints on transmission capacity, creating natural experiments that facilitate
the identification of causal relationships.

Importantly, these discontinuities were particularly pronounced in 2021 and 2022
(see Figure 1) due to the combined effects of the war in Ukraine and the shutdown
of nuclear power plants in Sweden. Furthermore, the price area borders do not gener-
ally follow other administrative borders, such as the border between municipalities or
counties. To illustrate, 81% of the individuals in the data used in this paper lives in a
municipality where the price area border cuts through the municipality.

By comparing households that are geographically close but on opposite side of the
borders, I can isolate the effect of electricity prices on EV demand. In particular, these
households face identical car supply and access to charging infrastructure, but substan-

1See, for example, https://www.reuters.com/business/autos-transportation/
eu-electric-car-sales-drop-may-german-demand-slumps-industry-says-2024-06-20/ and
https://swedenherald.se/article/electric-car-sales-continue-to-fall
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tially different electricity prices. This allows me to attribute differences in EV demand
to local variation in electricity prices, thereby constructing a credible counterfactual
scenario.2

In the first part of the empirical analysis, I use a regression discontinuity (RD) design
(Calonico et al., 2014, 2017) applied on cross-sectional data aggregated to 1000 × 1000
meter plots to show that there is a causal effect of electricity prices on EV demand
at the border and year with the largest price discontinuity (a price differential of ap-
proximately 0.022€/kWh). The estimated treatment effect amounts to ten fewer EVs
per 1000 households in the treatment group, compared to the control group that faced
substantially lower electricity prices. This can be compared to the mean outcome in
the control group, which is 23 EVs per 1000 households. Thus, the estimated treatment
effect corresponds to approximately 44% of the mean outcome. This result is robust to
alternative specifications, and I also address possible concerns relating to sorting and
spillover of treatment effects.

Furthermore, I show that this effect is predominantly driven by the demand for bat-
tery electric vehicles (BEVs), whereas there is no effect of electricity price on the demand
for plug-in hybrids (PHEVs), and that the demand for leasing EVs is less responsive to
electricity prices than purchased EVs. I also show that increasing electricity prices not
only reduce the demand for EVs, but also reduces the demand for combustion-engine
vehicles (CVs). This latter result suggests that the income effect of an increase in the
electricity price is relatively large, and that policies to promote EV demand needs to
take such effects into account.

The RD model only measures the effect of electricity prices on EV demand close
to the price area border (i.e., the cutoff) and, since it is a model for cross-sectional
data, at one border and year. Furthermore, as I detail in Section 3.1 and Section D
in the Appendix, there is only one out of three border regions that has a high enough
population density to ensure a high enough statistical power when using the RD model.

To understand if the treatment effect estimated from the RD is generalizable to other
price areas and years, the second part of the empirical analysis consist of estimating a
Poisson pseduo-maximum likelihood (PPML) model applied to plot-level data covering
several years and price area borders. To account for unobserved heterogeneity in the
PPML model, I compare plots located within 20 km on opposite side of each price area
border by including price area border dummy variables in the spirit of Black (1999).
Conceptually, this methodology is equivalent to calculating differences in mean EV
demand per 1000 households on opposite sides of price area borders (controlling for
household characteristics at the plot level) and relating this to differences in electricity

2As I detail in Section B in the Appendix, while there has been some changes to policies pertaining
to the electricity market and the market for EVs, these policy changes do not affect my empirical results
since they do not change at the price-area borders, or at any other administrative borders.
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prices within price area border regions. This approach allows me to pool the data across
price areas and years, while still accounting for unobserved heterogeneity in space in a
similar spirit to the RD approach.

The estimated effect of electricity price on EV demand using the PPML model cor-
roborates the results from the RD model in that there is a sizable effect of electricity
prices on EV demand, with estimated elasticities ranging from −0.568 to −2.132, de-
pending on specification. This, combined with the insights from the RD model, leads
to the conclusion that EV demand is sensitive to electricity prices—more so than what
previous studies have shown (e.g., Bushnell et al., 2022; Mauritzen, 2025).

The third part of the empirical analysis is concerned with heterogeneity in price re-
sponsiveness. A growing literature have shown that EVs are predominantly purchased by
high-income households (see, for Borenstein and Davis, 2024; Haan et al., 2024), which
raises concerns about equity regarding the electrification of transportation. Specifically,
the literature argues that while the benefits of transportation electrification are signifi-
cant for low-income households (e.g., because they spend a larger share of their income
on transportation costs), a disproportionately low number of EVs have been sold in
these communities. The usual explanation is that low-income households are less likely
to have home charging facilities or afford the installation of such infrastructure, have
smaller budgets for vehicle purchases, and generally own fewer vehicles.

To understand if heterogeneity in the response to electricity prices contributes to
differences in EV demand across consumer types, I estimate a logit specification applied
to household-level data to explore heterogeneity in price responsiveness across a broad
range of household characteristics, including income, age, number of kids and commuting
distance. Similar to the PPML model, I include price area border dummy variables to
facilitate the comparison between households located on opposite sides of each price
area border. As far as I am aware, this is the first such analysis in the literature,
and Swedish registry data provides a unique opportunity to study such heterogeneity,
given the high level of detailed socio-economic data available. In brief, I show that
high-income households, households with long commuting distances, and households
with more than one existing car, are relatively more responsive to prices. The price
responsiveness is, however, surprisingly homogeneous, with small and in most cases
statistically insignificant differences across consumer types.

Finally, I discuss policy implications of estimated causal effect of electricity prices on
EV demand, and consider a hypothetical removal of the Swedish electricity tax for EV
buyers as a counterfactual policy. Given some strong but plausible assumptions, back-
of-the-envelope calculations show that removing the tax for EV buyers may increase EV
uptake with approximately 21%, using the number of EVs bought in 2022 as baseline.
Next, I compare this effect with those from previous studies that have examined subsi-
dies on public charging infrastructure and EV purchases. This comparison reveals that
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a subsidy on electricity is less effective in boosting EV demand than a same-sized sub-
sidies to charging infrastructure or cars. Finally, since EVs are predominantly bought
by high-income households, and since the heterogeneity in price responsiveness is small,
the policy is likely regressive, mostly benefiting high-income households.

The paper makes several contributions to the existing literature on EV demand. In
particular, the sensitivity to prices is not very well studied, and as far as I am aware, the
only two papers that so far have measured the sensitivity of EV demand to electricity
prices are Bushnell et al. (2022) and Mauritzen (2025).3 The current paper expands the
analysis in these studies in several directions.

First, this paper provides comprehensive evidence that the demand for EVs is sen-
sitive to electricity prices - more so than previously reported in earlier studies. This
finding highlights the importance of price as a determinant of EV adoption. The anal-
ysis draws on a comprehensive dataset that captures not only car purchases, but also
a wide range of consumer characteristics, allowing for a more nuanced understanding
of how electricity prices impact consumer decisions than in the existing literature. For
example, Mauritzen (2025) only observe income and population density, and only at the
county level. Bushnell et al. (2022) do not observe consumer characteristics at all. In
comparison, the data used in the current paper includes detailed individual-level infor-
mation about income, age, family size, commuting distance, existing cars and precise
geographic location.

This detailed data not only enhances the accuracy of the findings but also allows for
an exploration of heterogeneity in price responsiveness among different consumer groups.
This aspect of heterogeneity in price sensitivity has not been explored in prior research,
making this a novel and significant contribution to the literature on heterogeneity in
EV demand (e.g., Bigler and Radulescu, 2022; Borenstein and Davis, 2024; Haan et al.,
2024; Hardman et al., 2016, 2021).

Second, the research extends the scope of analysis to include the impact of electric-
ity prices on the demand for CVs. This aspect of the relationship between electricity
prices and vehicle demand has not been estimated in previous literature, making this
an important contribution. The results highlight the broader economic implications of
electricity price changes, beyond their direct impact on EV adoption.

Lastly, the paper contributes to the growing body of literature on policy measures
aimed at incentivizing EV adoption (e.g., Clinton and Steinberg, 2019; Haan et al.,
2024; Halse et al., 2025; Jenn et al., 2018; Muehlegger and Rapson, 2022; Münzel et

3While the literature on the effect of electricity prices on EV demand (the extensive margin) is
sparse, there is a somewhat larger body of work on the effects of electricity prices on charging behavior
(the intensive margin). This literature has shown that consumers are willing to pay a premium for
fast charging Dorsey et al., 2022; Wolbertus et al., 2018, that the charging of EVs at home is inelastic
(Nehiba, 2024), and that automation can increase the response to electricity prices (Burkhardt et al.,
2023).

5



0
.1

.2
.3

E
u

ro
/k

W
h

2014m1 2016m1 2018m1 2020m1 2022m1 2024m1

Month

SE1 & SE2 SE3

SE4

Figure 1: Monthly average wholesale electricity price from 2015 until 2024
Note: SE1 and SE2 faced more or less identical prices during the period 2015 to 2022, and are shown
as one line

al., 2019; Springel, 2021). It explores the potential of subsidizing electricity prices as
an alternative policy measure to the more commonly studied subsidies on vehicles or
charging infrastructure. This is the first study to make this comparison, providing a
fresh perspective on policy alternatives for encouraging the uptake of EVs.

The rest of the paper is structured as follows: In Section 2, I describe the data used,
detailing sources, variables collected, and preprocessing steps. Section 3 outlines the
empirical methods for analyzing the data and estimating the effects of electricity prices.
Section 3.1 explains the RD approach, including the rationale, identification strategy,
and implementation. Section 3.2 examines heterogeneity in price responsiveness across
BEVs, PHEVs, and leasing EVs, while Section 3.3 analyzes the impact of electricity
prices on the demand for CVs.

In Section 3.4, I address sorting and spillover effects, discussing their potential im-
pact on the RD design and mitigation steps. Section 3.5 covers the robustness and
sensitivity of the RD results, including robustness checks and sensitivity analyses. Sec-
tion 3.6 presents the PPML model, explaining its motivation, specification, and esti-
mation, and Section 3.7 explores heterogeneity in price responsiveness across household
characteristics. Next, I discuss policy implications of my findings in Section 4, and also
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Figure 2: New cars sold in Sweden, by fuel type.
Note: The lines represent car sales for the whole of Sweden and includes leasing cars. Source: https:
//www.scb.se/hitta-statistik/statistik-efter-amne/transporter-och-kommunikationer/
vagtrafik/fordon/pong/statistiknyhet/fordonsstatistik-juni-2018/
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provide back-of-the-envelope calculations of a policy counterfactual where the Swedish
electricity tax is removed for EV buyers, evaluating its impact on EV demand and CO2
emissions. Finally, Section 5 concludes.

2 Data

The data used in this paper originates from Statistics Sweden (https://www.scb.se/

en/services/ordering-data-and-statistics/microdata/). Specifically, I combine
data from the longitudinal integrated database for health insurance and labor market
studies ("LISA") and the geographic database ("Geografidatabasen") with data from
the Swedish vehicle register ("Fordonsregistret"). The merged data measures annual car
purchases and leasing per individual living in villas4 located within 20 kilometers of an
electricity price area border. The data covers the years 2019-2022. Before 2019, both
EV demand and electricity prices were relatively low and stable, with minimal variation
across price areas.

For each individual, I observe the fuel type, make, model, and vintage of both
purchased and leased cars during the sample period, as well as existing cars.5 The data is
rich in individual characteristics, and includes individual-level information about which
electricity price area they live in, the closest neighboring electricity price area, and the
distance to the nearest electricity price area border as the crow flies (all these variables
are provided by Statistics Sweden). Additionally, I observe income, education level, age,
number of children under the age of 18, and commuting distance. The data allows me
to identify individuals living together, enabling aggregation of individual variables to
the household level. In the remaining text, the unit of study is the household with the
assumption that for individuals living together, the decision to purchase an EV is made
at the household level.

I merge this data with public data on wholesale electricity prices (in €/kWh) from
Nordpool (https://www.nordpoolgroup.com/). These prices are measured at the price
area level and are annual averages. While I do not observe households’ retail electricity
prices or their specific tariff choices, most Swedish households have tariffs that vary
over time. The Swedish electricity market is deregulated, allowing households to choose
from approximately 200 retailers, each offering various tariff options. About 65% of
households have tariffs with monthly price fluctuations, and an additional 10% have
real-time pricing contracts with hourly price changes. In contrast, less than 20% of

4Individuals living in flats often have electricity costs included in their rent, making their response
to electricity prices less clear. Additionally, individuals in flats may not be able to charge their EVs
at home, and fewer flat-dwellers own cars compared to those living in villas (e.g., Chaisemartin et al.,
2022).

5For older cars, I observe milage, but this is only recorded during annual inspections, from which
newly produced cars are exempt. Consequently, I do not observe mileage for most EVs, as they are
predominantly new.
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households have opted for tariffs with prices fixed for a year or longer. Thus, varia-
tions in wholesale electricity prices are reflected in the retail prices paid b households.
Monthly changes in wholesale prices translate into similar variations in retail prices.
Households with fixed-price contracts are expected to base their investment decisions
on price expectations, influenced by wholesale price trends.

Summary statistics of key variables, by price area, are presented in Table 1. Given
that price areas 1 and 2 experienced almost identical electricity prices during the sample
period, I aggregate them into a single price area for this table and the subsequent
analysis. All variables are household-level aggregates, except for age which is the age of
the oldest person in the household.

Starting with the outcome variable, the data reveals that the number of EVs per
household purchased varies significantly, both within and across different price areas.
Specifically, households living in price areas 3 and 4 purchase more EVs, averaging be-
tween 0.014 and 0.015 EVs per household per year. In contrast, households in price
areas 1 and 2 purchase fewer EVs, with an average of 0.008 EVs per household per
year.6 This lower uptake of EVs in the northernmost price areas does not appear to be
influenced by electricity prices, which are consistently lower in these regions. Instead,
a plausible explanation for this phenomenon is the sparse population in northern Swe-
den, longer commuting distances, and the cold winters that negatively impact battery
capacity (e.g., Song et al., 2021).

Figure 3 provides a visual representation of the average number of EVs per price
area over the years. One notable observation is that throughout the sample period, EV
demand is higher in price area 3 than in price area 4. Interestingly, while the demand
for EVs has increased throughout the sample period, this growth appears to slow down
in 2022 for price areas 3 and 4, with a more pronounced deceleration in price area 4
compared to price area 3. Price area 1 and 2, that faced only small increases in the
electricity price during the sample period, have seen a rather constant increase in EV
demand.

Electricity prices vary both spatially and temporally, with the highest and most
variable prices observed in price area 4, followed by price area 3, and then price areas 1
and 2. This variation is also illustrated in Figure 1 and in Table A.1 in the Appendix.
In addition to the wholesale electricity price, the retail price per kWh includes an energy
tax (approximately €0.02 per kWh for consumers in price areas 1 and 2 and €0.03 per
kWh for consumers in price areas 3 and 4) and a sales tax (25% on the total cost for
electricity).

To put the price differentials across price areas into perspective, an average Swedish
household consumes approximately 15, 000 kWh per year (not including charging of

6A similar pattern is observed for EVs purchased prior to 2019, with higher numbers in the southern
price areas compared to the northern ones.
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Mean Std. dev. Min Max
Price areas 1 & 2
EV per household 0.008 0.091 0.000 1.000
Elec. price (Euro/kWh) 0.037 0.016 0.014 0.060
No. of cars 1.309 0.548 1.000 3.000
Commuting dist. (km) 3.460 8.083 0.000 115.657
Distance to border (km) 11.611 5.109 0.134 19.999
Household inc. (1000 Euro) 0.232 0.196 0.000 2.551
No. of children 0.457 0.888 0.000 4.000
Age 55.888 16.393 18.000 99.000
Vintage 2010.201 7.075 1946.000 2022.000
Obs. 57,945
No. of hh. 17,850
Price area 3
EV per household 0.015 0.123 0.000 1.000
Elec. price (Euro/kWh) 0.061 0.040 0.020 0.125
No. of cars 1.297 0.537 1.000 3.000
Commuting dist. (km) 2.465 5.739 0.000 129.393
Distance to border (km) 11.652 5.591 0.001 20.000
Household inc. (1000 Euro) 0.286 0.238 0.000 10.171
No. of children 0.576 0.944 0.000 4.000
Age 54.404 16.152 17.000 102.000
Vintage 2012.633 6.075 1923.000 2022.000
Obs. 295,946
No. of hh. 90,628
Price area 4
EV per household 0.014 0.118 0.000 1.000
Elec. price (Euro/kWh) 0.071 0.047 0.024 0.146
No. of cars 1.317 0.553 1.000 3.000
Commuting dist. (km) 2.332 5.356 0.000 131.565
Distance to border (km) 10.356 4.749 0.003 19.999
Household inc. (1000 Euro) 0.268 0.216 0.000 4.367
No. of children 0.543 0.931 0.000 4.000
Age 55.259 16.216 18.000 103.000
Vintage 2012.540 6.076 1927.000 2022.000
Obs. 183,340
No. of hh. 55,747

Table 1: Summary statistics
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Figure 3: EVs per price area and year
Note: The lines represents average EV demand per price area and year, and includes both battery electric
vehicles, plug-in hybrids and leasing cars. SE1 is excluded from the figure and the main analysis, which
focuses on price areas 2 to 4. This is because there was no discontinuity in the electricity price at the
border between SE1 and SE2.

EVs), see, for example, Lanot and Vesterberg (2019, 2021) and Vesterberg (2018). In
2022, when the price differential was the largest between price areas 3 and 4 (at about
€0.022 per kWh), a household in price area 4 would pay approximately €400 (including
the 25% sales tax) more in electricity expenditure than a similar household in price area
3, on average. In terms of charging costs, a household that charges an EV at home and
drives 15, 000 km per year, consuming 0.2 kWh per km, would incur about €65 (again
including the 25% sales tax) more in annual charging costs if located in price area 3,
compared to price area 4.

Although the differences in expenditure may seem minor, it’s crucial to recognize
that households in price areas 3 and 4, and to a lesser extent those in price areas 1
and 2, faced significant price increases during 2021 and 2022. For instance, a household
in price area 4 consuming 15,000 kWh saw its electricity expenditure in 2022 rise to
more than four times the amount spent in 2019 (from approximately €712 to €2737,
including sales tax). Similarly, a household in price area 3 experienced an increase of
slightly more than three times.7

Income levels vary slightly across price areas, with higher income in price areas 3 and
4, compared to price areas 1 and 2, and with substantial variation within price areas.

7This price variation is much larger than in Bushnell et al. (2022), and similar in magnitude to the
price variation in Mauritzen (2025).
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Since the previous literature repeatedly has emphasized income as a key determinant
of EV demand, I further explore the role of income by plotting Engel curves for EV
demand by year in Figure 4 presents Engel curves for EV demand by year. The sample
is divided into ten equally-sized income groups, and the share of households purchasing
an EV each year is plotted for each income group. For this figure, I have dropped
households with zero reported income.

A first thing to notice is that EVs are owned predominantly by high-income house-
holds (above the median income). Second, the relationship between income and EV
demand is non-linear. The share of EVs is relatively homogeneous across lower income
groups (i.e., below an annual income of approximately €35, 000), where the income
elasticity is close to zero), whereas EV demand increases rapidly among higher income
groups, indicating a relatively high income elasticity in this segment. Third, the share
of EVs per income group has increased relatively more among the low-income groups,
compared to the high-income groups. For income group 5, the share of EVs is eight
times higher in 2022 compared to 2019. For income group 10, the share of EVs in 2022
is seven times larger than it was in 2019. Fourth, the relative difference in the share of
EVs across income groups has decreased somewhat during the sample period. In 2019,
the share of EVs was 3.5 times larger in income group 10 compared to income group
5, whereas it was only 2.75 times larger in 2022. In the coming sections, I detail how I
account for this income feature in the empirical approaches used in this paper.

It is noteworthy that other variables, such as commuting distance and the number of
children, exhibit substantial variation, primarily within price areas and to a lesser extent
across price areas. This is evident when comparing the standard deviation to the mean
of these variables. For instance, mileage and commuting distance show large differences
across households, reflecting diverse travel patterns and transportation needs. Similarly,
the number of children per household varies widely, which can influence household
transportation choices and vehicle ownership. Age, which here is defined as the age of
the person registered to the car the household owns8, is relatively high, with a mean of
54 to 55. However, this is explained by the fact that the sample only includes people
living in villas, which are generally older than people living in flats.

The number of cars per household, and the vintage of the newest of these cars
shows less variation compared to the other variables, both across price areas and within
price areas. This variation is primarily observed across different households rather than
over time within the same household or plot. In other words, while households may
experience some changes in this variable over the years, the most significant differences
are seen when comparing different households.

The differences in household characteristics across price areas decrease when fo-
8In the case of several cars registered on different family members, I use the average over those

persons
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cusing on households living close to the price area borders. To illustrate, I focus on
households living in price areas 3 or 4 and regress a price area dummy variable on, for
example, income and commuting distance, respectively. I estimate separate regressions
for bandwidths equal to 15, 10 and 5 km of distance to the price area border. As the
bandwidth shrinks, the estimated effect of the dummy variable decreases and very close
to zero for small bandwidths. This is reassuring, since it suggest that a design that
relies on the discontinuous jump in prices and balanced covariates at the price area
borders is valid. I further explore whether covariates jump at the border in more detail
in Section 3.1.

Finally, for most new EVs, I observe the car prices. In Table C.1 in the Appendix, I
list the five most common EV makes and models along with their purchase prices, using
figures from 2022 (the summary statistics are similar for the other sample years). These
figures are provided for the entire sample and broken down by price area. Notably,
the five most common EVs in terms of make and model are mostly consistent across
different price areas. For example, Kia Niro is the most common EV in price areas 1, 2
and 3, and the fourth most common EV in price area 4. Furthermore, the prices of the
most popular EVs are very similar across price areas. This is explained by the fact that
car dealers typically offer free delivery of new cars to the purchaser’s location, allowing
consumers to buy from the dealer with the lowest price. The reason car prices vary
somewhat between price regions is likely because consumers choose different options
and specifications for their cars. The similarity in EV make and model preferences and
prices is reassuring for the current paper, as it suggests that spatial differences in EV
demand are not influenced by car prices or preferences for specific makes and models of
EVs.

3 Empirical analysis

In line with the previous literature on vehicle demand (e.g., Allcott and Wozny, 2014;
Bushnell et al., 2022; Busse et al., 2013), it is assumed that consumers base their
purchase decisions on the price of the car and the expected (discounted) operational
costs over the car ownership period (in my data, the average replacement rate for
relatively new cars is approximately five years). These operational costs are influenced
by several factors, including electricity prices, the car’s efficiency (i.e., kWh per kilometer
driven), and the extent of the car’s usage (i.e., kilometers driven).

When electricity prices increase, the expected operational costs of owning an EV
also rise. This increase in operational costs lead to a decrease in the demand for EVs, as
consumers may find them less economically attractive. Additionally, higher electricity
prices can have an income effect on consumers (e.g., Mauritzen, 2025). As electricity
prices rise, the cost of baseline electricity consumption becomes more expensive. This
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increase in baseline consumption costs reduces consumers’ overall purchasing power,
making it more difficult for them to afford new vehicle purchases, including EVs.

In the subsequent sections, I will outline the empirical methods used to identify the
causal effect of electricity prices on the demand for EVs. These methods isolate the
impact of electricity prices from other factors that may influence consumer behavior
and vehicle demand.

3.1 Regression discontinuity

To measure the causal effect of electricity prices on EV demand, I begin by employing a
RD design (e.g., Imbens and Lemieux, 2008; Lee and Lemieux, 2010 and more recently
Cattaneo and Titiunik, 2022).9 This approach relies on the assumption that households
located near the price area borders are similar in all respects except for the electricity
prices they face. Specifically, these households experience the same interest rates, infla-
tion, car supply, access to charging infrastructure, and proximity to labor markets, but
they face different electricity prices.

Formally, I estimate the local average treatment effect τ based on the following
model:

τ = µ+ − µ− (1)

where
µ+ = lim

x→0+
µ(x), µ− = lim

x→0−
µ(x), and µ(x) ≡ E[Yi|Xi = c] (2)

The parameters µ+ and µ− represent the limit of the expectation of the outcome
variable Y given the running variable X as it approaches the cutoff threshold X = x (in
my case, the price area border) from above and below, respectively. Thus, τ measure
the magnitude of the jump in the outcome variable at the point of the discontinuity.

To estimate the treatment effect, I follow the approach outlined in Calonico et al.
(2015, 2017) to obtain bias-corrected point estimates using local linear functions, data-
driven optimal bandwidths and confidence intervals that are robust to large bandwidths
choices (hereinafter referred to as robust confidence intervals). This approach aims to
balance bias (a smaller bandwidth reduces bias) with variance (a larger bandwidth re-
duces variance) by minimizing the mean squared error of the estimator. Furthermore,
I use a first-order local polynomial to construct the point estimator (i.e., a local lin-
ear regression) following the arguments provided in, for example, Gelman and Imbens
(2019). In the main specification, I use a triangle kernel but provide estimation results
for the uniform and the Epanechikov kernels in Section F in the Appendix.

I aggregate the household data to plot level using 1000×1000 meter plots in sparsely
populated areas and 250 × 250 meter plots in densely populated areas. The plots are

9Spatial discontinuities have been leveraged as identification strategy in, for example, Black (1999),
Butts (2023), Grembi et al. (2016), and Keele and Titiunik (2015).
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pre-defined by Statistics Sweden.10. The outcome variable is defined as number of
purchased EVs per 1000 households, and the treatment effect of interest is the exposure
to high electricity prices. Distance to the price area border is the forcing variable, and
the localization of the border is the cutoff. Since I do not observe the coordinates of the
price area borders, but only the distance to the border as the crow flies, I am unable
to estimate a RD model with two forcing variables (e.g., longitude and latitude) as in,
e.g., Keele and Titiunik (2015).

I focus the analysis on the most recent year in the data, which is 2022. This is
the year in the data with the largest price differential (i.e., the largest discontinuity in
price). I will also estimate the model using data for the years prior to 2022, which in the
case of 2019 and 2020, can be viewed as placebo tests. Since there was no discontinuity
in price during these years or the period before this, we should expect the treatment
effect to be zero for these years. In 2021, there was a non-zero price discontinuity that
was smaller in size than in 2022, and we should then expect the estimated treatment
effect to be negative but smaller than the treatment effect in 2022. These are indeed
the results I find, see Section 3.4 and Section F in the Appendix.

It is crucial to understand that any differences in outcomes measured in 2022 may be
influenced by both recent price differentials during that year and a potentially long his-
tory of price variations. Prices began to diverge in 2021, and this divergence continued
up until 2022. Therefore, the effects I measure reflect the impact of the price discon-
tinuity at the border, without making assumptions about whether these differences in
outcome are due to recent price differentials or the accumulation of price differentials
over a period of time.

Furthermore, I focus on the border between price areas 3 and 4 since this is the
most densely populated price border area, whereas the other price area borders are
more sparsely populated. As I detail in Section D in the Appendix, this difference in
population density translates to large differences in statistical power (i.e., the probability
that the test will correctly reject a false null hypothesis), with much higher power at the
price area border between price areas 3 and 4, compared to the other border regions.

I estimate three RD specifications: First, I estimate the model using EV sales per
1000 households in price area 3 and 4 as the outcome variable, distance to the border
between price area 3 and 4 as the forcing variable, and without any additional covari-
ates. Second, I estimate the same specification but this time with covariates, following
the method outlined in Calonico et al. (2019).11 These covariates are included to re-

10I do not observe the location (longitude and latitude) of individual households. However, Statistics
Sweden has divided Sweden into plots, and information about which of these plots each household is
located in. I observe the coordinates (longitude and latitude in sweref99) of each plot, and the plots
never overlap price area borders (but may overlap other administrative borders, such as municipalities
and counties).

11An alternative is to residualize the outcome variable and then estimate the RD on the residuals of
the outcome. See, for example, Greenstone et al. (2022) and Meng and Yu (2023). This can be done
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duce the residual variance in the outcome variable, leading to more precise estimates
of the treatment effect of interest. Specifically, I control for the number of existing
cars and the vintage of these cars, commuting distance, income group (using the same
income bins as in Figure 4), age and number of kids per household. All these variables
are included as plot-level averages. Including more covariates, such as family situation
(married, living together or single household), capital income, squared terms (e.g., in-
come and commuting distance squared) or interaction terms (e.g., between income and
age or commuting distance) does not lead to better precision, and does not change the
estimated treatment effect.

Because two plots located at the same distance to the price area border may still be
separated in longitude, I also account for longitudinal differences. Specifically, I divide
the longitude into 20 bins (the results are robust to a different number of bins), and
include these as covariates linearly. This is a common approach in spatial RD (see, e.g.,
Keele and Titiunik, 2015; Lehner, 2021) and ensures that I compare only units in close
proximity (within the boundary segment) and rule out comparisons of units that are
close to the border but geographically far away from each other.

For all covariates, I use the value of these covariates prior to the treatment (i.e., in
2019), and all the covariates are “balanced” (meaning that they have equal conditional
expectations at the cutoff). I test this by estimating the RD model with the covariates
as outcome variables (see Calonico et al., 2019; Lee, 2008), and results are presented in
Table E.1 in the Appendix. Based on these empirical results, I find that all covariates
have an RD treatment effect indistinguishable from zero at a 95% significance level. In
other words, I cannot reject the null hypothesis of equal conditional expectations at the
price area border.

I also estimate a third specification that is identical to the second one except for that
I winsorize the data for all observation where the outcome variable (EVs per 1000 house-
holds) is above the 99th percentile. This accounts for the fact that the RD is sensitive
to outliers, especially if these outliers happens to be located close to the cutoff.12

Estimation results from these three specifications are presented in Table 2 and the

using both parametric and non-parametric techniques, as well as machine learning techniques (Kreiss
and Rothe, 2023; Noack et al., 2021). However, these approaches does not improve the precision of the
estimated treatment effect in my analysis. Estimation results using these approaches are available upon
request.

12An alternative approach to account for the influence of outliers close to the border is to estimate
a so-called donut RD (e.g., Barreca et al., 2011), where observations close to the border are dropped.
The donut RD also addresses the concern that households might manipulate the running variable to
fall just above or below the cutoff to avoid the treatment. This manipulation can distort the estimated
treatment effect. On the other hand, in Section 3.4, I use the panel structure of the data to show that
sorting along the borders is not very likely in my context. In any case, Figure E.2 in the Appendix,
I present results from the donut RD, where I vary the donut hole from 100 meters to 500 meters.
While this also reduces the estimated treatment effect, compared to the results in the second column
in Table 2, it does so to a lesser extent than winsorizing. The winsorized results may therefore to be
viewed as conservative estimates.
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treatment effect from the two specifications with covariates are presented in Figure 5.13

A first thing to note is that for all specifications, the estimated treatment effect is neg-
ative, meaning fewer EV purchases in price area 4 compared to price area 3. However,
the estimate for the specification without covariates is relatively noiser, as indicated
by the relatively large robust bias-corrected confidence interval. For the specifications
where I include covariates, the treatment effect is estimated more precisely. For spec-
ification 2, the treatment effect is approximately −10, and the corresponding estimate
for specification 3 is −5.6.14

To give a sense of magnitude, the average outcome for the control group near the dis-
continuity (within the MSE-optimal bandwidth) is approximately 23, with a standard
deviation of 94. Thus, the treatment effect for specification 2 corresponds to approxi-
mately 44 percent of the mean outcome, or approximately 11 percent of the standard
deviation of the outcome variable for the control group. The electricity price in price
area 4 in 2022 was 0.146€/kWh, which is approximately 18% higher than in price area
3, which faced a price of 0.124 €/kWh.

This relatively large estimated treatment effect suggests that the price shock in 2022
has influenced consumers’ expectations about future prices, and that consumers expect
the shock to be relatively persistent. In particular, if consumers would expect the price
shock in 2022 to be temporary and the electricity price to revert back to its mean after
that, it seems likely that the response would be much smaller, since such a temporary
shock would have limited effects on the operational costs of an EV.

Comparing with estimates from the existing literature, Mauritzen (2025) finds that
higher electricity prices reduce the proportion of electric car purchases by 2-5%, de-
pending on the specification. This reduction appears small given the relatively large
price differential between the control and treatment groups, with average prices of 0.029
Euro/kWh in low-price areas and 0.140 Euro/kWh in high-price areas. In Bushnell et al.
(2022), the estimated marginal effect ranges from approximately -0.2 to -0.8. With a
mean price of 30 (cents per kWh) and a mean quantity of 10 (EVs per 10,000 house-
holds), this implies an elasticity of approximately -0.07 to -0.27.

3.2 Battery EVs, Plug-in hybrids and leasing EVs

I have so far aggregated battery electric vehicles (BEV) and plug-in hybrids (PHEV),
but there might be differences across these two types of EVs. In particular, since the
latter type relies to a lesser extent on electricity, it seems plausible that the response
to the electricity price should be smaller for PHEVs than for BEVs. To address this,
I estimate the local treatment effect separately for BEVs and PHEVs using the same

13Furthermore, I also provide a power plot for the main specification in Section E in the Appendix.
14This relatively large difference in estimated treatment effects suggest that outliers have a relatively

sizeable influence on the estimates.
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(1) (2) (3)
EVs per 1000 hh. EVs per 1000 hh. EVs per 1000 hh.

RD_Estimate -8.201 -10.332*** -5.618**
Robust 95% CI [-24.986 ; 5.532] [-20.18 ; -1.542] [-11.454 ; .32]
Kernel type Triangular Triangular Triangular
BW type mserd mserd mserd
Bandwidth 8769 7976 6140
Obs. 13074 9599 9599
Robust p-value 0.212 0.022 0.064
Order Loc. Poly. (p) 1.000 1.000 1.000
Order bias (q) 2.000 2.000 2.000
Price areas 3 & 4 3 & 4 3 & 4
Year 2022 2022 2022
Control variables No Yes Yes
Winsorizing No No Yes
Mean outcome, treatment 18.123 18.141 14.712
Mean outcome, control 23.121 23.534 17.106

Table 2: RD estimation results, EVs per 1000 households
Note: i) Treatment effects are estimated using the robust RD approach suggested by Calonico et
al. (2017) and with a triangular kernel. ii) Bandwidth is chosen using the data-driven MSE-optimal
approach in Calonico et al. (2014). iii) The order bias specifies the order of the local polynomial used
to construct the bias correction. This bias correction helps to adjust the RD point estimator to account
for the bias introduced by the polynomial approximation. iv) The mean outcome for the treatment and
control groups are estimated within the MSE-optimal bandwidth and reflect the mean outcome near
the discontinuity.
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Figure 5: RD treatment plots, EVs per 1000 households
Note: i) The solid lines represents local linear polynomial regression curve estimates for control (to the
left of the dashed vertical line) and treatment (to the right of the dashed vertical line) units separately.
ii) The bins illustrate local sample averages of the outcome variable within evenly spaced bins of the
running variable (distance to the border), and the number of bins are chosen using the data-driven
approach outlined in Calonico et al. (2014).
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(1) (2) (3)
BEVs per 1000 hh. PHEVs per 1000 hh. Leas. EV per 1000 hh.

RD_Estimate -7.304* -2.008 -2.092**
Robust 95% CI [-17.428 ; 1.079] [-7.018 ; 4.162] [-4.809 ; .368]
Kernel type Triangular Triangular Triangular
BW type mserd mserd mserd
Bandwidth 8470 6605 6199
Obs. 9599 9599 9599
Robust p-value 0.083 0.617 0.093
Order Loc. Poly. (p) 1.000 1.000 1.000
Order bias (q) 2.000 2.000 2.000
Price areas 3 & 4 3 & 4 3 & 4
Year 2022 2022 2022
Control variables Yes Yes Yes
Winsorizing No No No
Mean outcome, treatment 12.995 8.602 11.028
Mean outcome, control 14.937 9.748 11.181

Table 3: RD estimation results, BEVs, PHEVs and leasing cars per 1000 households
Note: i) In the first column, the outcome variable is number of battery EVs per 1000 households. In
the second column, the outcome variable is the number of plug-in hybrids per 1000 households, and in
the third column, the outcome variable is the number of leasing EVs (both BEV and PHEV) per 1000
households. ii) Treatment effects are estimated using the robust RD approach suggested by Calonico
et al. (2017) and with a triangular kernel. iii) Bandwidth is chosen using the data-driven MSE-optimal
approach in Calonico et al. (2014). iv) The order bias specifies the order of the local polynomial used
to construct the bias correction. This bias correction helps to adjust the RD point estimator to account
for the bias introduced by the polynomial approximation. v) The mean outcome for the treatment and
control groups are estimated within the MSE-optimal bandwidth and reflect the mean outcome near
the discontinuity.

approach as above
Furthermore, there may be differences in price responsiveness between leasing and

purchasing EVs. Recent literature emphasizes the growing importance of the EV leasing
market and suggests that consumers leasing EVs may differ from those purchasing them,
particularly in terms of financial constraints (see Gonzalez-Salazar et al., 2023; Li et
al., 2021). To understand if leasing and purchased EVs differ in their sensitivity to
electricity prices, I estimate a specification that includes only leasing EVs.

Estimated treatment effects for these three specifications are presented in Table 3,
and as expected, there is a negative treatment effect for BEVs that is equal to −7.3,
whereas the treatment for PHEVs is −2 and statistically insignificant. This difference
in price responsiveness is in line with the results presented in Mauritzen (2025). Fur-
thermore, the estimated treatment effect for leasing EVs is smaller than the previous
estimates, suggesting that the demand for leasing EVs is less elastic.
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3.3 Combustion engine vehicles

There are two economic effects of higher electricity prices on car demand: an income
effect and a substitution effect. The income effect occurs because higher electricity
prices reduce overall purchasing power, leading to a decrease in the total demand for
cars. Households have less disposable income to spend on vehicles after accounting for
their higher electricity bills. The substitution effect, on the other hand, arises because
the relative cost of operating an EV compared to a CV changes due to the increase in
electricity prices. As a result, households may find it more economical to opt for CVs
over EVs, leading to an increase in the demand for CVs relative to EVs.

To investigate this, I estimate the RD model previously described but using CVs as
the dependent variable. These are predominantly vintage CVs: there are approximately
180 vintage CVs bought per 1000 households, and approximately 10 new CVs (the
vintage of the car is the same as the year of purchase).15 Apart from this change of the
dependent variable, the models remain identical to those presented earlier.

The results from this specification are presented in Table 4, and show that high
electricity prices not only reduce the demand for EVs but also for CVs, with an estimated
treatment effect of −27. This corresponds to approximately 14 percent of the mean or
11% of the standard deviation of the outcome, which means that the effect is relatively
smaller than the effect on EVs. A plausible explanation to this result is that higher
electricity prices reduces households’ purchasing power since they face a higher cost for
their baseline electricity consumption (electricity used for heating, cooking, lighting,
etc), therefore leading to lower demand for all cars. In particular, if there was no
income effect and only a substitution effect, or if the income effect was smaller than the
substitution effect, we would expect the demand for CVs to increase. I discuss policy
implications of this finding in Section 4.

3.4 Placebo tests, sorting and spillover of treatments

To assess the robustness of the RD results, I conduct placebo tests and discuss sorting
and spillover of treatments. To begin with, I estimate the treatment effect for the other
sample years. The price differential between price areas 3 and 4 was the highest in 2022
(€0.022/kWh). In comparison, the price differential was smaller in 2021 (approximately
€0.014/kWh), and even smaller in 2019 and 2020 (see Table A.1 in the Appendix). We
should thus expect the treatment effect to be smaller in 2021, and zero in 2019 and 2020.
Estimating the RD for these two latter years can then serve as a placebo treatment,
where a zero treatment effect is indicative of support for the identifying assumption in
the RD model. As is illustrated in Table F.1 in the Appendix, this is precisely what I

15I have estimated the RD model separately for old and new CVs, and the estimated treatment for
old CVs is approximately -33 and zero for new CVs.
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(1)
CVs per 1000 hh.

RD_Estimate -27.992**
Robust 95% CI [-64.746 ; -.515]
Kernel type Triangular
BW type mserd
Bandwidth 6391
Obs. 9588
Conventional p-value 0.057
Robust p-value 0.046
Order Loc. Poly. (p) 1.000
Order bias (q) 2.000
Price areas 3 & 4
Year 2022
Control variables Yes
Winsorizing No
Mean outcome, treatment 189.739
Mean outcome, control 194.785

Table 4: RD estimation results, new and old CVs per 1000 households
Note: i) Treatment effects are estimated using the robust RD approach suggested by Calonico et
al. (2017) and with a triangular kernel. ii) Bandwidth is chosen using the data-driven MSE-optimal
approach in Calonico et al. (2014). iii) The order bias specifies the order of the local polynomial used
to construct the bias correction. This bias correction helps to adjust the RD point estimator to account
for the bias introduced by the polynomial approximation. iv) The mean outcome for the treatment and
control groups are estimated within the MSE-optimal bandwidth and reflect the mean outcome near
the discontinuity.
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find when estimating the RD for these years.16 In particular, the treatment effects are
close to zero for 2019 and 2020 (albeit negative), and the estimated treatment effect in
2021 is approximately half of the estimated treatment effect for 2022.

Next, I conduct placebo tests by estimating the treatment effects at points 6, 000,
4, 000 and 2, 000 meters north and south of the electricity price area border between
price areas 3 and 4. These placebo tests serve to check whether any discontinuities in
the outcome variable are present at locations where no actual treatment occurs.

The results of these placebo tests, presented in Figure F.1 in the Appendix, indicate
that the estimated treatment effects at all placebo points are statistically indistinguish-
able from zero. This finding supports the assumption that any observed discontinuity at
the actual border is attributable to the treatment effect rather than other confounding
factors. Specifically, the absence of significant treatment effects at the placebo points
suggests that the running variable (distance to the border) does not inherently influence
the outcome variable in the absence of the treatment.

Furthermore, I address possible concerns about households sorting around borders.
For example, households sensitive to electricity prices might move from expensive to
cheap price areas. I investigate this by using the panel structure of the data to measure
how many households move to a different price area per year, the extent to which they
move from expensive to cheap price areas, and how these quantities differ across years.

If households sort along borders based on electricity prices, we should expect more
households to move from an expensive price area to a cheap one, especially when elec-
tricity price differentials are larger. However, this exercise reveals that few households
move across price areas each year (less than one percent per year), while many more
households move within price areas (approximately four percent per year). See Ta-
ble F.2 in the Appendix for details. Additionally, there are as many households moving
to cheaper price areas (i.e., moving north) as there are households moving to more
expensive price areas (i.e., moving south). Finally, the number of households moving
across price areas is similar across years. For example, regressing yearly dummy vari-
ables on the first difference of price area (which is then zero if a household do not move
to a different price area, negative if a household move north to a cheaper price area
and positive if they move south to a more expensive price area) shows no statistically
significant differences across years.

Spillover of treatment effects through equilibrium prices (e.g., as discussed in Stiglitz
and Kosenko, 2024) is unlikely. At the beginning of 2021, there were approximately
340, 000 EVs in Sweden, of which approximately 150, 000 were BEVs and 190, 000 were
PHEVs. An EV consume on average 0.2 kWh per km. The average driving distance per

16Since I do not observe covariates prior to 2019, I am unable to include pre-treatment covariates for
this year. Results are from a specification where covariates are from 2019, and this should be kept in
mind when interpreting the results
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car in Sweden in 2021 was 11, 260km per year (and let’s assume that PHEVs drive half
of that on electricity).17 This amounts to 150, 000∗0.2∗11, 260+190, 000∗0.2∗5, 630 =
787, 500, 000 kWh or approximately 0.79 TWh in electricity charging. This, in turn,
corresponds to approximately 0.4% of Sweden’s total electricity use. This is assumed
to be too small to have any substantial effect on the electricity price, which is therefore
assumed exogenous.

Furthermore, it is equally unlikely that consumers drive to other side of the border
to charge, since it is always more expensive to charge at charging station than at home,
irrespective of where the consumer live. To illustrate, the highest spot price I observe
in my data is 0.16 €/kWh, and the prices at public charging stations starts at around
0.3−0.5 €/kWh, and with even higher prices for fast chargers (see, for example, https:

//www.ionity.eu/network/access-and-payments which is one of the largest charging
networks in Sweden).

3.5 Sensitivity to estimation options

To check the sensitivity of the RD results to estimation options, I provide a series
of sensitivity analyses. Results from these analyses are presented in Section F in the
Appendix and are briefly discussed here. First, I estimate the main RD specification
for different bandwidths. Specifically, the optimal bandwidth is approximately 5000,
and I provide point estimates and confidence intervals for bandwidths from 3500 to
7500, in increments of 500. Results from these estimations are presented in Figure F.2.
Evidently, the point estimates are very similar across different bandwidths, but the con-
fidence intervals decrease as the bandwidth increases. Second, I estimate the main RD
specification for different polynomials (linear and quadratic) and for different kernels
(uniform and Epanechnikov). Again, while point estimates are very similar across spec-
ifications, the precision varies somewhat, with the uniform kernel providing the lowest
precision.

Finally, since the plots differ in population density, they contain different amount
of information. In particular, a densely populated plot may carry more information
than a sparsely populated plot. On the other hand, it should be noted that population
density in my sample is relatively homogeneous across plots, and furthermore, there is i)
no jump in population density at the border, and ii) there is no statistically significant
difference in population density at opposite sides of the border. Nevertheless, I estimate
the model excluding plots below the 10th percentile and above the 90th percentile of
population density (i.e., number of households per plot).18 Although this reduces the

17See https://www.scb.se/hitta-statistik/redaktionellt/tredubbling-av-elbilar-pa-tva-ar2/
for statistics on the number of BEVs and PHEVs, and https://www.trafa.se/globalassets/
statistik/vagtrafik/korstrackor/2021/korstrackor-2021.pdf for driving distance.

18An alternative would be to weight observations by their population density. However, it is not
obvious how to include such weights in the RD model, and I therefore use the simpler approach of
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sample size and, therefore, the precision, the estimated treatment effect is very similar
to the main specification (approximately −8.5), suggesting that the population density
per plot does not influence the results to any greater extent.

3.6 Poisson pseudo-maximum likelihood

The RD approach outlined above is a robust quasi-experimental method, but it does
come with limitations. Most importantly, RD estimates the treatment effect precisely at
the cutoff point where the assignment changes. This specificity means that the results
are highly localized and may not be applicable to other points in the distribution or
to the broader population. This localized nature of RD estimates can thus limit the
generalizability of the findings. Furthermore, I have so far only used data around the
border between price areas 3 and 4, and for the year 2022. Since the price discontinuity
at the border vary in size over time and space, any analysis that includes more than one
year and border needs to include electricity price as a continuous treatment variable.
This also allows me to express the response to prices as an elasticity.

To validate the findings obtained from the RD approach, and to estimate the re-
sponse to electricity prices for all data, I estimate a Poisson Pseudo-Maximum Likeli-
hood (PPML) model (Silva and Tenreyro, 2006) using aggregate plot-level data covering
all sample years and several price area borders.19 As in the RD analysis, EV demand
per 1000 households is the outcome variable, and the log of electricity price (€/kWh)
is the independent variable of interest. I control for the same set of covariates as in the
RD model.

To account for unobserved heterogeneity in the PPML model, I include price area
border dummy variables in the spirit of Black (1999). Specifically, I include dummy
variables for each price area border. For example, the dummy variable for the border
between price area 3 and 4 takes the value one if plot i is located within 20 km from
this border and zero otherwise, and similar for the remaining borders. Price areas 1
and 2 faced identical prices during the sample period. This means that there is no price
variation within that border region, and therefore this border region is excluded from
the estimation.

In principle, this methodology is equivalent to calculating differences in mean EV
demand per 1000 households on opposite sides of price area borders (controlling for
household characteristics at the plot level) and relating this to differences in electricity
prices. Importantly, this accounts for unobserved heterogeneity that is specific to any
given price area border region, such as car supply, charging infrastructure or climate.

excluding outliers from the estimation.
19This model is particularly well-suited for this analysis as it effectively handles count data and is

robust to heteroskedasticity, ensuring that the estimates remain consistent and unbiased even when the
variance of the errors is not constant. Moreover, this approach allows me to directly estimate the price
elasticity of EV demand.
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In other words, by comparing households that are geographically close but on opposite
side of the borders, I can isolate the effect of electricity prices on EV demand. This
approach allows me to pool the data across price areas and years, while still accounting
for unobserved heterogeneity in space in a similar spirit to the RD approach (Busse
et al. (2006) refers to this as a regression discontinuity approach with a continuous
treatment.)

Formally, the regression equation is

Qjt = exp(β ln Pjt + Zjtθ + γj + γt) + ϵjt (3)

where Q is the number of EVs bought per 1000 households in year t and plot j, ln Pjt is
the log electricity price, Z is a vector of household characteristics at the plot level (in-
come, number of cars, commuting distance, number of kids, age and vintage of existing
cars), γj is the price area border fixed effect and γt is a year fixed effect. Note that year
fixed effects account for the price of cars and the price of petrol and diesel, since these
variables only vary across time, not space. The key parameter of interest is β, the price
elasticity of EV demand with respect to electricity prices.

Estimation results from the PPML model are presented in Table 5 for four different
specifications. In the first column, I include all price areas (2, 3 and 4) and years but
no spatial fixed effects (price area border and longitude fixed effects) and no household
characteristics, only year fixed effects. In the second column, I present estimation results
for a similar specification but where I add price area border and longitude fixed effects.
In the third column, I also add household characteristics as control variables. The fourth
column present results for a similar specification as in the third column, but this time
only for price areas 3 and 4. Thus, the data used in the fourth column corresponds
approximately to the data used to estimate the RD, except for that I here include all
years.

For the first specification with no spatial fixed effects, the estimated effect of elec-
tricity price on EV demand is positive. However, once I add spatial fixed effects, the
effect of the electricity price on EV demand is negative. Adding more control variables
improves the model fit (as indicated by, for example, the psedo-R2 in the bottom panel
of Equation (3)) and also improve the precision of the estimated price elasticity slightly.
The estimated elasticity in specification 3 is −0.568, meaning that as EV demand is
inelastic. Finally, in specification 4, the estimated elasticity is −2.132, which is very
similar to the RD estimates presented previously, which implies an elasticity of approx-
imately −2. In addition, I provide estimation results for a specification identical to
column 3 but for different bandwidths in Table G.1 in the Appendix. Reducing the
bandwidth increases the estimated elasticity, but leads to lower precision.

The fact that the RD and PPML estimates are similar is an important finding. Re-
member that the RD estimates capture the response to contemporaneous and historical
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(1) (2) (3) (4)
EVs per 1000 hh. EVs per 1000 hh. EVs per 1000 hh. EVs per 1000 hh.

ln(€/kWh) 0.290** -0.670*** -0.568*** -2.132***
(0.133) (0.216) (0.207) (0.336)

Household inc. 0.109*** 0.116***
(0.011) (0.013)

No. of cars 0.280*** 0.286***
(0.063) (0.069)

Commuting dist. 0.000* 0.000
(0.000) (0.000)

No. of kids 0.231*** 0.195***
(0.041) (0.045)

Age 0.008*** 0.009***
(0.003) (0.003)

Vintage 0.028*** 0.022***
(0.007) (0.008)

Constant 3.476*** 0.944 -55.660*** -48.150***
(0.355) (0.576) (15.075) (16.323)

Spatial Fe No Yes Yes Yes

Price areas 2-4 2-4 2-4 3-4
Observations 55325 55325 49390 39315
ll -1974250.475 -1956376.028 -1572775.112 -1290787.686
aic 3948504.949 3912756.057 3145566.224 2581591.372
bic 3948522.791 3912773.899 3145636.684 2581660.007
pr2 0.045 0.054 0.078 0.073
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

Table 5: Poisson Psedo-Maximum Likelihood, EVs per 1000 households
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price differentials, allowing for past variations in prices to influence behavior over time.
On the other hand, the PPML model focuses on the response to current, or contem-
poraneous, prices. If households (or households’ price expectations) respond more to
historical price differentials, we would expect the RD estimates to be large in absolute
value, compared to the PPML estimates. However, the fact that they are very similar
suggests that the demand for EVs is primarily driven by current prices rather than
historical price trends.

The difference between columns 3 and 4 in Table 5 suggests that consumers located at
the border between price areas 3 and 4 are much more responsive to the electricity price
than consumers located at the border between price areas 2 and 3. There are several
possible explanations to this difference. Importantly, it is important to remember that
EV adoption is much more pronounced in the south of Sweden, compared to the north
(e.g., price areas 1 and 2), and that the electricity increased much more in the south
of Sweden than in the north. This may affect the response to prices. For example,
consumers in the south of Sweden may be more concerned about price increases in the
future. Furthermore, climate and temperature may be important determinants in the
north of Sweden (because of cold and long winters), and that this might make consumers
less responsive to prices.

In addition, there are differences in average income levels and socioeconomic status
across regions, which may influence price sensitivity and not only the level of demand.
For example, in the south of Sweden, income is higher and commuting distances are
shorter than in the north. In particular, the south of Sweden has more urban areas
compared to the north, and urban residents might have different driving patterns and
energy consumption habits, making them more sensitive to electricity prices. In the next
section (Section 3.7), I explore heterogeneity in price responsiveness in more detail.

3.7 Heterogeneity in price responsiveness

The final part of my empirical analysis explores how sensitivity to electricity prices
varies across different socio-economic characteristics, including age, income, number of
cars, and commuting distance. For this analysis, I utilize disaggregated household-level
data. I estimate a logistic regression with EV demand per household as the outcome
variable, log of electricity price as the key independent variable of interest, and I control
for covariates at the household level rather than at the plot level. To allow for non-
linear effects of household characteristics, I split each variable (income, age, commuting
distance and vintage of existing cars) and include dummy variables for each decile. For
the variables number of children and number of cars, I include dummy variables for each
level of these variables (1-3 cars20 and 0-4 children). I then evaluate the marginal effect

20The number of households purchasing an EV with zero existing cars are virtually non-existent in
my sample
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of the log electricity price across the household characteristics deciles to understand how
the price sensitivity vary across consumer types.

Formally, the regression equation is

Pr[qit = 1] = 1
1 + exp

[
−(β0 + β1 ln(p)it + ∑K

k=1
∑Jk

j=1 βkjDkj,i + γj + γt)
] (4)

where qit takes the value one if household i purchase an EV in year t, pit is the
electricity price and Dkj,i is a dummy variable for the j-th category of the k-th cate-
gorical control variable, taking the value 1 if the k-th control variable equals j and 0
otherwise. K is the number of categorical control variables (in my case six: income,
age, commuting distance, vintage, number of children and number of cars) and Jk is
the number of categories for the k-th control variable (10 categories for income, age,
commuting distance, vintage, 5 categories for number of children and 3 categories for
number of cars). As before, γi is the price area border fixed effect, and γt is the year
fixed effect, which, in a similar spirit to before account for the supply of cars and the
price of petrol and diesel. I use robust standard errors.

Predicted probabilities across household characteristics are presented in Figures H.1
to H.3 in the Appendix and briefly summarized here. In general, there is substantial het-
erogeneity in EV demand across income and commuting deciles and across the number
of children and cars, and to a lesser extent across age and vintage deciles. Specifically,
the probability of purchasing an EV is much higher for high-income households and
households with long commuting distances. Furthermore, young and old households are
more likely to purchase an EV, compared to middle-aged households, and the probabil-
ity increases with the number of cars. Households with two children are more likely to
purchase an EV than households with zero or four children.

Next, I turn to the marginal effect of a 1% increase in the electricity price on the
probability of purchasing an EV, conditional on the income decile a household belongs
to. Given the specification in Equation (4), the marginal effect describes the percentage
points change in the probability of purchasing an EV from a 1% change in the elec-
tricity price. The levels of the household characteristics across deciles are presented in
Table C.2 in the Appendix.

The estimated price responsiveness across deciles for each of the regressions described
above are presented in Figures 6 to 8. The estimated effect of price on the outcome
is on average approximately 0.015, meaning that a 1% increase in price is a decrease
in the probability of purchasing an EV of approximately -0.015% points. The mean
outcome of approximately 0.015 (1.5% of households purchase an EV). This means that
a 0.015% points reduction in the probability is equal to a 1.3% decrease in probability.
The magnitude of this effect is relatively close to the effect estimated using the PPML
model (in which a 1% increase in price reduces demand by between 0.568%-2.132%,
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depending on specification).
To compare the estimates in the figures to those estimated previously using the

PPML model, the average marginal effect of a 1% increase in price is a decrease in
the probability of purchasing an EV of approximately -0.015% points according to the
results in Figures 6 to 8. The mean outcome in the data is approximately 0.015, (i.e.,
1.5% of households purchase an EV). A 0.02% points reduction in the probability is
then equal to a 1.3% decrease in probability. If we interpret the outcome as EVs per
household, so that a 1% increase in price reduces the number of EVs per household
by 1.3%, the estimated effect here is relatively close to the PPMP estimates (in which
a 1% increase in price reduces EVs per 1000 households by between 0.568%-2.132%,
depending on specification).

Turning to heterogeneity across consumer types, and beginning with the effect of
household income on price responsiveness as presented in the left panel of Figure 6, price
sensitivity is highest among income deciles 1-5 and then decreases for higher income
deciles. For the top income decile, price sensitivity is indistinguishable from zero. The
right panel of the same figure shows price sensitivity across age groups, revealing that
both young and old households are slightly more sensitive to electricity prices than
middle-aged households. However, for both household income and age, the differences
in price responsiveness are small, as indicated by the overlapping confidence intervals.
This suggests that consumers are relatively homogeneous in terms of price response
across both income and age.

Next, Figure 7 shows that price sensitivity decreases with both commuting distance
(left panel) and vintage of existing cars (right panel). However, the differences are small.
For the top decile of commuting distance, the differences in price responsiveness across
deciles are not statistically significant.

Finally, the left panel of Figure 6 illustrates that households with either no children
or four children are relatively more responsive to electricity prices than households with
1-3 children. Additionally, as is shown in the right panel, consumers with no previous
car are more responsive to electricity prices than those who already have one or more
cars. However, the differences in price responsiveness between households owning one,
two, or three cars are statistically insignificant.

To summarize, while there is some heterogeneity in price responsiveness across con-
sumer types, the differences are in general small. This is an important result: first, it
shows that heterogeneity in price responsiveness does not appear to contribute to het-
erogeneity in EV demand to any larger extent. Secondly, the results also suggest that
it may be difficult to target subsidies to electricity prices to specific consumer groups,
since most consumers would respond relatively similar to such policies.
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Figure 6: Price responsiveness across income and age
Note: i) The figure presents the marginal effect of a 1% increase in electricity price on EV demand across
income and age deciles, as described in Equation (4). ii) The levels of the household characteristics across
deciles are presented in Table C.2 in the Appendix
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Figure 7: Price responsiveness across commuting distance and vintage
Note: i) The figure presents the marginal effect of a 1% increase in electricity price on EV demand across
commuting distance and vintage deciles, as described in Equation (4). ii) The levels of the household
characteristics across deciles are presented in Table C.2 in the Appendix
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Figure 8: Price responsiveness across number of children and cars
Note: i) The figure presents the marginal effect of a 1% increase in electricity price on EV demand across
commuting distance and vintage deciles, as described in Equation (4). ii) The number of households
purchasing an EV with zero existing cars are virtually non-existent in my sample.

4 Policy implications

I have so far demonstrated that high electricity prices lead to a reduction in the demand
for EVs. This reduction is influenced by both income effects, where higher electricity
costs reduce overall purchasing power, and substitution effects, where consumers opt
for CVs instead of EVs due to the increased operational costs. Furthermore, EVs are
predominantly purchased by high-income households, who exhibit a greater sensitivity
to electricity prices compared to low-income households. However, the differences in
sensitivity between income groups are relatively small.

These findings have several important policy implications. First, they suggest that
subsidizing electricity could effectively increase the demand for EVs. This type of policy
could serve as an alternative to direct subsidies for car prices or investments in charging
infrastructure. While subsidies for car prices or infrastructure represent a one-time
cost for policymakers, an electricity subsidy would likely need to be maintained over
several years. This is because consumers tend to base their purchase decisions on the
expected operational costs over the period they own the car, which, according to the
data, averages around five years.

Second, if there are both income and substitution effects from electricity price shocks,
it may be necessary to subsidizing both the electricity used specifically for charging EVs
to make them more cost-competitive relative to CVs, as well as subsidizing baseline
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electricity consumption to enhance overall household purchasing power. In any case, it
would be challenging for policymakers to distinguish between different types of electric-
ity use, making the implementation of a policy that targets only charging very complex.

Third, unless policymakers can precisely target the subsidy to those who would not
have purchased an EV without it, many households that benefit from the policy would
have bought an EV regardless. This makes it difficult to ensure that the subsidy is
effectively encouraging additional EV purchases rather than simply providing financial
benefits to existing buyers (this is the case for other policies as well; see, for example,
Haan et al., 2024; Springel, 2021).

Fourth, a uniform electricity subsidy is likely to be regressive. This is because EVs
are mainly bought by high-income households, which are more sensitive to changes in
electricity prices. Consequently, a subsidy targeting low-income households would need
to be larger to have a meaningful impact, as these households are less responsive to
electricity price changes.

To accurately assess the efficiency of an electricity subsidy in terms of generating
additional EV purchases, and to compare it with alternative policies like subsidies for
car prices and charging infrastructure, I present a policy counterfactual that provides a
rough estimate of the impact of an electricity subsidy based on the empirical findings
in this paper and some strong but plausible assumptions. Specifically, I consider the
effects of a counterfactual removal of the Swedish electricity tax. The electricity tax
in Sweden is €0.045 per kWh for households in southern Sweden and €0.035 per kWh
for households in northern Sweden.21 In my counterfactual scenario, the electricity tax
is set to the EU minimum level (0.0005€/kWh)22 for EV buyers during the lifespan of
the EV. In my data, the average replacement rate of cars is approximately five years.
To account for both income and substitution effects of electricity prices, the policy
considered here is a subsidy on all electricity consumption, and not just the electricity
used for charging the EV.

I assume that the incidence of the tax completely falls on consumers. Thus, a tax cut
leads to a same-size reduction in consumers’ electricity prices. This appears reasonable,
given that electricity demand is close to completely inelastic in the short run (e.g.,
Lanot and Vesterberg, 2021) and that supply is considerably more elastic (Lundin and

21The motivation for this tax was originally to raise fiscal revenues for the government, but it is also
used to provide monetary incentives for promoting energy conservation and efficiency (for a detailed
discussion of the electricity tax, see Brännlund and Kriström, 2020) A tax on electricity is problematic
for several reasons. Firstly, it is unclear what market failure this tax is intended to address, given that the
Swedish electricity generation mix is clean in terms of CO2 emissions (see Section A in the Appendix).
Secondly, it is particularly problematic to tax electricity when electrification is crucial for achieving
climate goals. Taxing electricity in this context can be counterproductive, as it may discourage the
adoption of EVs and other electric technologies essential for reducing greenhouse gas emissions. Indeed,
this is precisely what the results presented in this paper show.

22See https://taxation-customs.ec.europa.eu/taxation/excise-taxes/
excise-duties-energy_en
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Tangerås, 2020). See also Fabra and Reguant (2014). I also assume that the increased
demand for EVs due to the tax cut does not lead to higher vehicle prices.23

Using the estimated price elasticity from column 3 in Table 5 in Section 3.6 as a
measure of the response to this policy change, this policy would result in approximately
22, 924 additional EVs in Sweden (20, 812 in the south and 2112 in the north). Us-
ing 2022 as the baseline scenario, this corresponds to an increase of EV demand by
approximately 21%, which is a sizable increase.

To compare this policy to subsidies on car prices and charging infrastructure, I
need to relate the increase in EV demand to resources spent by the government (in
this case, foregone tax revenues). I assume that electricity consumption is on average
15, 000 kWh per household per year. This corresponds approximately to the figures
presented in recent studies of residential electricity consumption in Sweden; see, for
example, Lanot and Vesterberg (2019, 2021) and Vesterberg (2018). Previous literature
have repeatedly shown that residential electricity consumption is close to completely
inelastic in the short run, and this baseline demand is therefore assumed fixed in the
short run. Further, I assume that EVs replace conventional cars one-for-one, and that
cars on average are driven 12, 000 km per year (this corresponds approximately to the
average mileage in the data), irrespective of whether it is an EV or CV. Bushnell et al.
(2022) makes similar assumptions in their policy analysis. The average kWh/km is 0.2 in
my data, meaning that cars consume 0.2 kWh per km driven. Given these assumptions,
the policy results in a reduction in tax revenues of €86, 326, 194 per year.24

The increase in EVs and the associated foregone tax revenue can be compared to the
estimated cost of subsidies for either cars or charging stations provided in the previous
literature. For example, Springel (2021), using Norwegian household-level data, esti-
mate that every €100, 000 spent on charging station subsidies results in 13.5 additional
EV purchases, while the same amount spent on purchase price subsidies lead to 4.8
additional EVs being purchased. Haan et al. (2024) finds that EV subsidies in Germany
increase EV purchases by approximately 7 EVs per €100, 000, and Clinton and Stein-
berg (2019) and Muehlegger and Rapson (2022) finds similar effects of EV subsidies in
the US.

In comparison, removing the electricity tax leads to approximately 5.3 more EVs
per €100, 000 spent, which suggests that this policy is less efficient per spent tax money
than subsidies to charging stations, and similar in size to the effect of subsidies to car
prices.

23This assumption can, at least to some extent, be motivated by the recent years’ slowdown in
EV demand, suggesting that there is an excess supply of EVs. In particular, many automakers have
overestimated the demand for EVs, leading to higher production levels than the market can currently
absorb. An increased demand for EVs (due to the tax cut) should therefore not lead to higher car prices.

24I arrive at this number by multiplying the tax reduction by the number of EVs bought, the electricity
use (baseline plus charging), the electricity use per km and the km’s driven.
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5 Conclusions

In this paper, I estimate the causal impact of electricity prices on the demand for EVs
by leveraging unique and highly detailed registry data from Sweden. This analysis
takes advantage of the discontinuities in electricity prices across Sweden’s four distinct
price areas. I employ two empirical strategies to exploit this feature: a non-parametric
RD design, and a PPML regression where price area border fixed effect facilitates the
comparison between observations located close to each other but at opposite side of the
price area borders. Both methodologies consistently indicate that electricity prices have
a substantial influence on the demand for EVs. Furthermore, I show that this effect
is mainly driven by BEVs, and that electricity prices reduces the demand not only for
EVs, but for CVs as well.

Next, I use a logit regression on household-level data to explore heterogeneity in
price responsiveness across a broad range of socio-economic household characteristics. I
show that high-income households and households with many children, and, to a lesser
extent, households with many cars and longer commuting distances, are relatively less
responsive to prices, and that older households respond stronger to electricity prices.

The finding that high electricity prices reduces the demand for EVs is particularly
concerning given the broader context of ongoing electrification efforts. As industries
and transportation sectors continue to electrify, the demand for electricity will increase,
potentially driving prices even higher. This creates a paradoxical situation: the more
society moves towards electrification, the higher the electricity prices become, which in
turn makes further electrification less appealing. This catch-22 underscores the need
for careful consideration in policy design to balance the benefits of electrification with
the economic realities of electricity pricing. Policy makers may respond to this either
by subsidizing (or in other ways enabling) an expansion of electricity supply, or through
subsidizing electricity prices for EV buyers.

The implications of these findings are important for policy-making. The transition
to EVs is a critical component of global strategies aimed at reducing greenhouse gas
emissions and mitigating climate change. However, recent years have seen a deceleration
in the growth of EV demand. This paper posits that elevated electricity prices may be
a key contributing factor to this slowdown, alongside other economic pressures such as
rising interest rates and inflation. Nevertheless, subsidizing electricity prices may be
less efficient in boosting EV demand than same-sized subsidies to charging infrastruc-
ture. To illustrate this, I use the estimated effects to consider a counterfactual policy
scenario in which the Swedish electricity tax is removed for households purchasing an
EV. I show that this policy is likely less cost-efficient in terms of increasing EV de-
mand than alternative policies such as, for example, subsidies to either EVs or charging
infrastructure.
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Appendix A Electricity price areas in Sweden

In 2011, Sweden’s electricity market was restructured to address regional differences
in electricity supply and demand, as well as to manage transmission constraints more
effectively. This restructuring resulted in the division of the country into four distinct
electricity pricing areas, also known as bidding areas. The division into these four
areas was implemented to better reflect the regional variations in electricity supply and
demand, and to manage the transmission network more efficiently. By having distinct
pricing areas, the electricity market can reflect local market conditions and encourage
efficient use of the grid by highlighting areas with transmission constraints, thereby
encouraging investments in grid infrastructure and local generation capacity where it is
most needed.

The northernmost areas, price areas 1 and 2, are characterized by a surplus of
electricity production, primarily from hydroelectric power plants. The low population
density and significant hydro resources contribute to lower electricity prices compared
to the other price areas. Price area 3 is located in central Sweden (and includes the
capital Stockholm). This is the most densely populated area, and includes major urban
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centers like Stockholm and Uppsala. The high demand for electricity in this region,
combined with limited local production, often results in higher electricity prices. This
area relies more on electricity imports from other regions and countries. Finally, price
area 4 is located in the southernmost part of Sweden. This price area experiences the
highest electricity prices among the four areas. This is due to a combination of high
demand, limited local production capacity, and transmission constraints. The region
often imports electricity from other areas and neighboring countries. The four price
areas are illustrated in Figure A.1.

One of the significant challenges facing Sweden’s electricity market is the constrained
transmission capacity between different regions, particularly from the north to the south.
The transmission grid, managed by Svenska Kraftnät (see https://www.svk.se/), con-
sists of about 16, 000 kilometers of high-voltage lines. Despite this extensive network,
the capacity to transfer electricity from the north to the south is limited. This bot-
tleneck means that the electricity generated in the north cannot always be efficiently
transported to meet the demand in the south, leading to regional price disparities and
potential supply constraints.

In more detail, the Swedish main grid is an alternating current grid with transmission
in the north-south direction. The grid is built to transfer energy produced in the north
to consumers in the southern parts of the country. The need for transfer varies with
demand and the hydrological situation. A bottleneck is a section in the transmission
network that is often at risk of being congested. Congestion risks occurring when
the market demand to transmit electricity through a section is greater than what is
physically possible. The demarcation of the four Swedish electricity areas follows three
of the most common sections found in the electricity grid. There are four sections where
bottlenecks occur frequently. Three of these cuts through the country in an east-west
direction, and risk being congested when the electricity transmission goes in a north-
south direction. The maximum transmission capacity across each section is not constant,
but can vary from hour to hour and day to day, depending on the configuration of the
grid (for example, if the grid is intact or if lines are disconnected for maintenance),
production and consumption, and imports and exports.

The Swedish electricity market is deregulated, and consumers are free to choose
between retailers and different type of retail contracts. In 2023, approximately 65% of all
households had a retail contract with prices varying by month; 10% had a retail contract
with prices varying by the hour, and the remaining households had a contract with prices
fixed for a year or longer. In addition to the retail price per kWh, the consumer price of
electricity includes the energy tax (roughly 0.05 €/kWh), the electricity certificate fee
(0.002 €/kWh on average for 2022), sales tax (25%) and a transmission fee consisting
of a variable part, which is roughly 0.01 €/kWh, and a fixed part, which varies between
roughly €150 and €1500 per year, depending on the size of the household’s fuse amp.
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2019 2020 2021 2022
Price area 1 0.026 0.013 0.039 0.057
Price area 2 0.036 0.013 0.039 0.06
Price area 3 0.036 0.020 0.06 0.124
Price area 4 0.038 0.024 0.074 0.146

Table A.1: Electricity price per price area and year, in €/kWh

None of these price components changed during the time of study, and except for the
distribution price, they are identical across price areas.

Turning to the supply side of Sweden’s electricity market, Sweden’s electricity gen-
eration mix has undergone significant changes over the past 20 years, reflecting the
country’s commitment to sustainability and reducing carbon emissions. Historically,
Sweden’s electricity production was dominated by hydroelectric and nuclear power.
Hydropower has been a cornerstone, consistently providing a substantial portion of the
country’s electricity due to Sweden’s abundant water resources. Nuclear power has also
played a crucial role, contributing significantly to the electricity supply.

In recent years, there has been a notable shift towards renewable energy sources.
Wind power has seen remarkable growth, increasing its share in the electricity mix
substantially. From a minor contributor in the early 2000s, wind power now accounts
for a large portion of Sweden’s electricity generation (approximately 20% as of 2024).
Solar power, although still a smaller part of the mix, has also experienced rapid growth,
especially during the 2010s. The use of biofuels has increased since the 1980s, and this
trend has continued into the 21st century, further diversifying the energy mix3. Fossil-
fuel based thermal power, once a more prominent part of the mix, has been largely
phased out in favor of cleaner energy sources.

Overall, Sweden’s electricity generation mix has evolved to become one of the clean-
est in the world, with a strong emphasis on renewable energy and low-carbon sources.
This transition reflects Sweden’s ongoing efforts to decarbonize its energy system and
lead by example in the global push towards sustainable energy.

For a more detailed description of the Swedish electricity market, see Holmberg and
Tangerås (2023).

Appendix B Swedish policies related to EV demand and
the electricity market

During the sample period, several policies took place that influenced both the market
for EVs and the electricity market. However, as I will explain in detail below, none of
these policies impact the results of my analysis.

First, the so-called Bonus-Malus policy in Sweden, which was introduced on July 1,
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Figure A.1: Sweden and its four price areas
Note: i) SE1 is price area 1, SE2 is price area 2, SE3 is price area 3 and SE4 is price area 4.
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2018, was designed to encourage the purchase of low-emission vehicles and discourage
the acquisition of high-emission ones. Initially, this policy provided financial incentives,
known as bonuses, for purchasing low-emission vehicles. For instance, vehicles emitting
0 grams of CO2 per kilometer could receive a bonus of up to SEK 70,000 (€6,900). The
bonus amount decreased for vehicles emitting up to 60 grams of CO2 per kilometer.
However, this bonus component was discontinued on November 8, 2022. While this
policy might have influenced the demand for EVs, it should not affect the estimates
presented in this paper. This is because the policy was applied uniformly across all price
areas, and my analysis relies on discontinuities at the borders of these areas. To ensure
robustness, I have also re-estimated all models in the paper excluding observations after
November 2022, and this exclusion does not alter my results in any way.

Secondly, over the past few years, the Swedish government has implemented several
policies aimed at mitigating the impact of high electricity prices. Up until 2024, there
have been two distinct support schemes relevant to my sample period. The first support
scheme was based on electricity consumption during the period from December 2021
to February 2022. Payments from this scheme were made to all households during the
second half of 2022. Since this policy did not differentiate between price areas in terms
of eligibility or the amount received, it does not affect my results.

The second support scheme was based on households’ electricity consumption from
October 2021 to September 2022 and specifically targeted households in price areas 3
and 4. This scheme also differentiated between these two price areas in terms of the
amount of support provided, with households in SE4 receiving slightly more than those
in SE3. However, this policy was decided and payments were made in the spring of
2023, which is after the end of my sample period. Therefore, this policy should not
affect the results presented in this paper.

Appendix C Data

Appendix D RD and power

For the RD approach, I concentrate on plots situated close to the border between price
areas 3 and 4. In 2022, the electricity price in price area 3 was €0.013 cents/kWh, while
in price area 4, it was €0.016/kWh. This difference of 0.024 €/kWh is quite substantial
and provides a clear basis for analysis. Although the price differential between price ar-
eas 2 and 3 was even larger, the number of households living near this border is relatively
small. This region of Sweden is sparsely populated, predominantly covered by forests,
and has very few inhabitants per square kilometer. In contrast, the border between
price areas 3 and 4 is much more densely populated. This differences in population
density are illustrated in Figure D.1, which shows the distribution of households near
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EV make and model Freq. Percent (of all EVs) Avg. price (in Euro)
All price areas
Kia Niro (KG021) 189 5.92 49,227
Kia Ceed (KG017) 187 5.59 37,233
Volvo XC40 (VO029) 173 5.17 55,354
Nissan Leaf (NA032) 121 3.62 50,093
Volkswagen ID.4 (VW040) 119 3.56 57,942
Price area 1 & 2
Kia Niro (KG021) 18 7.56 50,538
Kia Ceed (KG017) 11 4.62 38,748
Nissan Leaf (NA032) 8 3.36 39,115
Peugeot other (PG888) 8 3.36 52,279
Volvo XC40 (VO029) 8 3.36 59,622
Price area 3
Kia Niro (KG021) 120 6.4 49,436
Kia Ceed (KG017) 114 5.65 37,076
Volvo XC40 (VO029) 99 4.91 55,368
Volkswagen ID.4 (VW040) 84 4.17 58,240
Nissan Leaf (NA032) 61 3.03 51,429
Price area 4
Volvo XC40 (VO029) 66 6.06 54,571
Kia Ceed (KG017) 62 5.69 37,089
Nissan Leaf (NA032) 52 4.77 49,035
Kia Niro (KG012) 51 4.68 48,474
Ford Kuga (FO032) 38 3.49 48,720

Table C.1: Most common EVs per price area in 2022
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Decile Income (1000€) Age Commuting distance (km) Vintage
1 0.001-0.099 18-30 0-0.498 1926-2005
2 0.099-0.220 31-35 0.499-1.655 2006-2008
3 0.221-0.284 36-41 1.656-3.157 2009-2010
4 0.285-0.322 42-45 3.158-6.260 2011-2012
5 0.323-0.353 46-49 6.261-10.587 2013-2013
6 0.354-0.384 50-53 10.588-15.836 2014-2014
7 0.385-0.419 54-56 15.837-22.166 2015-2015
8 0.419-0.465 57-61 22.167-30.364 2016-2016
9 0.466-0.544 62-66 30.365-53.101 2017-2018
10 0.544-10.171 67-103 53.105-1315.651 2019-2022

Table C.2: Income, age, commuting distance and vintage across deciles

the borders of the different price areas. Plots with zero inhabitants are not included in
the data, and this is the reason for the few observations close to the border between
price areas 2 and 3.

It is important to note that population density is not uniform across the running
variable; instead, it exhibits a pattern of bunching, reflecting the locations of villages
and towns. Additionally, there are relatively few inhabited plots exactly at the border,
as these borders are situated in sparsely populated areas. In Section F, I utilize the
panel structure of the data to demonstrate that these characteristics do not violate the
identifying assumptions. For example, I show that the observed bunching in space is
not driven by price differentials.

The limited number of observations near the border between price areas 2 and 3
leads to lower statistical power, making it challenging to detect significant effects. On
the other hand, the higher number of observations near the border between price areas
3 and 4 results in much higher statistical power. This is demonstrated in Figure D.2,
which presents power functions for these two subsets of data. The power functions are
calculated using the approach outlined in Cattaneo et al. (2019) for computing statistical
power in RD settings. In this figure, Tau (measured on the horizontal axis) represents
the treatment effect and the vertical axis measures statistical power. The figure clearly
shows that the statistical power is substantially higher for the border between price
areas 3 and 4, and it increases even further when covariates are included in the analysis
(see Figure E.1 in Section E in the Appendix for a power plot for my preferred RD
specification, with covariates and winsorizing).
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Figure D.1: Density of data close to price area borders for price areas 2 and 3, and for
price areas 3 and 4.
Note: i) Observations are 1000 × 1000 meter plots in densely populated areas and 250 × 250 meter plots
in sparsely populated areas (i.e., the same unit of observation as in the RD analysis. ii) Plots with zero
inhabitants are not included in the data, and this is the reason for the difference in population density.
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(1) (2) (3)
EVs per 1000 hh. EVs per 1000 hh. EVs per 1000 hh.

RD_Estimate -0.597 -1.370 -4.323*
Robust 95% CI [-3.85 ; 3.169] [-7.976 ; 3.817] [-8.539 ; .858]
Kernel type Triangular Triangular Triangular
BW type mserd mserd mserd
Obs. 9792 9710 9645
Robust p-value 0.849 0.490 0.109
Order Loc. Poly. (p) 1.000 1.000 1.000
Order bias (q) 2.000 2.000 2.000
Price areas 3 & 4 3 & 4 3 & 4
Year 2019 2020 2021
Control variables Yes Yes Yes
Winsorizing No No No
Mean outcome, treatment 5.711 5.093 12.204
Mean outcome, control 4.657 6.086 13.501

Table F.1: RD estimation results for years 2019 to 2021
Note: In the first column, the outcome variable is number of EVs per 1000 households in 2019. In the
second column, the outcome variable is the number of EVs per 1000 households in 2020, and in the
third column, the outcome variable is the number of EVs per 1000 households in 2021. ii) For 2020
and 2021, I control for pre-treatment covariates using figures from 2019. For 2019, I use the covariates
for that year. iii) Treatment effects are estimated using the robust RD approach suggested by Calonico
et al. (2017) and with a triangular kernel. iv) Bandwidth is chosen using the data-driven MSE-optimal
approach in Calonico et al. (2014). v) The order bias specifies the order of the local polynomial used to
construct the bias correction. This bias correction helps to adjust the RD point estimator to account
for the bias introduced by the polynomial approximation.
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Figure E.1: Power plot, SE3 vs SE4, with covariates
Note: i) The statistical power is calculated using the approach outlined in Cattaneo et al. (2019), and
with the covariates used in the RD model in Section 3.1.

Appendix E Additional RD results

Appendix F Sensitivity analysis, RD

Appendix G Additional PPML results

Appendix H Additional logit results
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Figure E.2: Donut RD
Note: i) The treatment effect is estimated using the donut approach, where observations close to the
cutoff is removed.
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Figure F.1: RD results for placebo treatment away from the border
Note: The treatment effect is estimated using a placebo treatment away from the border ii) Price area
borders are defined in the east-west direction, and the placebo treatments are either south or north of the
true border. iii) Treatment effects are estimated using the robust RD approach suggested by Calonico
et al. (2017) and with a triangular kernel. iv) Bandwidth is chosen using the data-driven MSE-optimal
approach in Calonico et al. (2014). v) The order bias specifies the order of the local polynomial used to
construct the bias correction. This bias correction helps to adjust the RD point estimator to account
for the bias introduced by the polynomial approximation.
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Figure F.2: RD results across bandwidth
Note: The treatment effect is estimated for different choices of bandwidth. ii) Treatment effects are
estimated using the robust RD approach suggested by Calonico et al. (2017) and with a triangular
kernel. iii) Bandwidth is chosen using the data-driven MSE-optimal approach in Calonico et al. (2014).
iv) The order bias specifies the order of the local polynomial used to construct the bias correction.
This bias correction helps to adjust the RD point estimator to account for the bias introduced by the
polynomial approximation.
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Figure F.3: RD results across polynomials and kernels
Note: The treatment effect is estimated for different choices of polynomial and kernels. ii) Treatment
effects are estimated using the robust RD approach suggested by Calonico et al. (2017) and with a
triangular kernel. iii) Bandwidth is chosen using the data-driven MSE-optimal approach in Calonico
et al. (2014). iv) The order bias specifies the order of the local polynomial used to construct the
bias correction. This bias correction helps to adjust the RD point estimator to account for the bias
introduced by the polynomial approximation.
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Figure H.1: Probability of purchasing an EV across income and age deciles
Note: i) The levels of the household characteristics across deciles are presented in Table C.2 in the
Appendix
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Figure H.2: Probability of purchasing an EV across commuting distance and vintage
deciles
Note: i) The levels of the household characteristics across deciles are presented in Table C.2 in the
Appendix
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2020 2021 2022 All years
Moving south
SE1-SE2 21 21 15 57
SE2-SE3 46 57 59 162
SE3-SE4 240 238 216 694
SE1-SE3 0 3 0 3
SE2-SE4 1 0 0 1
SE1-SE4 0 1 1 2

Moving north
SE4-SE3 185 208 235 628
SE3-SE2 76 44 61 181
SE2-SE1 13 21 12 46
SE4-SE2 1 1 1 3
SE3-SE1 3 1 0 4
SE4-SE1 1 1 1 3

Within price area
SE1 109 131 98 338
SE2 288 301 280 869
SE3 3,196 3,687 3,295 10,178
SE4 1,894 2,133 1,822 5,849

No of households 134,222 135,445 135,414

Table F.2: Number of households moving across and within price areas per year
Note: For each year, I calculate how many households who have moved from their previous price area
price area further south, from their previous price area to a price area further north, and within (but
not across) price areas.
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(1) (2) (3)
EVs per 1000 hh. EVs per 1000 hh. EVs per 1000 hh.

ln(€/kWh) -0.758*** -0.923*** -1.355***
(0.214) (0.290) (0.466)

Household inc. 0.018 0.023 -0.016
(0.021) (0.025) (0.037)

No. of cars 0.178*** 0.159* 0.062
(0.068) (0.086) (0.119)

Commuting dist. 0.000 0.000 0.000
(0.000) (0.000) (0.000)

No. of kids 0.230*** 0.206*** 0.084
(0.044) (0.053) (0.089)

Age 0.004 0.006 -0.001
(0.004) (0.005) (0.007)

Vintage 0.289*** 0.291*** 0.318***
(0.012) (0.015) (0.022)

Constant -581.573*** -586.437*** -640.907***
(23.619) (29.733) (44.842)

Spatial FE Yes Yes Yes

Price areas 2-4 2-4 2-4
Observations 35911 21814 9528
Bandwidth (meters) 15000 10000 5000
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01

Table G.1: PPML, EVs per 1000 households, for different bandwidths
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Figure H.3: Probability of purchasing an EV across number of children and cars
Note: i) The number of households purchasing an EV with zero existing cars are virtually non-existent
in my sample.
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