
Earning dynamics in Sweden:
The recent evolution of permanent inequality

and earnings volatility∗

Johan Gustafsson†and Johan Holmberg‡

October 25, 2019

Abstract

This paper analyzes the dynamics of earnings over the life-cycle,
based on Swedish data, and the evolution of permanent and transi-
tory earnings inequality for 2002-2015. We use data on earnings from
administrative records gathered in the ASTRID database. We find
that features of the data does not match the predictions of the hetero-
geneous or restricted income profile models commonly applied in the
earning dynamics literature and estimate an alternative permanent-
transitory (PT) error components model. Analyzing the covariance
structure of both male and female earnings, controlling for educa-
tional background, we find that the upward trend in permanent earn-
ings inequality observed in Sweden during the 1990s does not seem
to continue during the 2000s, and the financial crisis of 2008 did not
have any major impact on the variability of earnings. We further sim-
ulate the accumulation of income pension entitlements and find that
variations in pension entitlements is smaller among college educated
workers.
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1 Introduction

The dynamics of individual earnings processes give crucial insights concern-
ing individual ranking and mobility within the earnings distribution (e.g.
Moffitt and Gottschalk, 1995; Haider, 2001; Baker and Solon, 2003; Gus-
tavsson, 2007, 2008; Doris et al., 2013; Kässi, 2014). The findings of these
studies reveal to which extent any observed changes in earnings inequality
have been driven by convergence or dispersion of life-cycle earnings (per-
manent earnings), or by changes in earnings volatility (transitory earnings).
For example, increased permanent inequality refers to a systematic widening
of the earnings distribution (the relative earnings gap between high earners
and low earners permanently increases), while increased transitory inequal-
ity implies increased mobility within the earnings distribution resulting in
increased short-term earnings fluctuations.

To draw any extensive conclusions about what drives any observed pat-
terns of earnings inequality, the earnings process has to be adequately decom-
posed into its permanent and transitory components. Increased permanent
inequality could arise due to labor demand shifts from increased off-shoring
and/or new technological paradigms, rendering skill depreciation of labor
input in concerned sectors. An increase in permanent inequality might suc-
cessfully be counteracted by policies targeting human capital investments
over the life-cycle. Earnings volatility could, for example, be explained by
changes in job instability due to labor market competition and/or hiring-
firing restrictions, and is commonly approached with unemployment insur-
ance to compensate for insufficient self-insuring measures.

This paper contributes to the literature by seeking evidence for the re-
cent evolution of life-cycle earnings variability and volatility in Sweden. We
employ data from the register database ASTRID, observing annual earnings
for the years 2002-2015. This marks the first time that ASTRID data is
utilized within this context, and the years included allow us to shed light
on the potential impacts on the structure of earnings inequality caused by
recent macro events, such as the great recession of 2008/2009 and the linger-
ing Euro debt crisis. We also analyze the evolution of both male and female
earnings inequality, contrasting the benchmark approach of only analyzing
male earnings inequality. Lastly, as an extension of the analysis, we provide
simulations of the distributions of income pension entitlements conditional
on the estimated earning profiles. The relevance of such application comes
from the notion of income pension entitlements being strictly derived from
life-time pensionable income, for which earnings constitutes a considerable
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share for most individuals.

Since the 1960’s, Sweden has experienced interesting and pronounced
changes in observed earnings inequality. The 1970’s saw a large decrease in
pay differentials as the result of the solidarity wage policy, compressing the
wage structure and subsequently decreasing earnings inequality. This pat-
tern reversed throughout the 1990’s with an observed increase in the cross-
sectional variance of earnings during the recession of 1990-1994. These two
events sparked the analyses conducted in Gustavsson (2007) and Gustavsson
(2008), concluding that a decrease of permanent earnings inequality begin-
ning in 1960 drove the subsequent compression of earnings, indicating that
the role of the solidarity wage policy as the main explanation for the decrease
in earnings inequality is not obvious.

Following the abandonment of centralized bargaining in 1983, Gustavs-
son’s findings indicate that the subsequent earnings dispersion was driven by
an increase in transitory inequality, questioning the explanation suggested in
Edin and Topel (1997) that permanent earnings dispersion from increased
incentives of individual human capital investments when abandoning the sol-
idarity wage policy was the main cause for the observed patterns. The in-
creased earnings dispersion that followed from the financial crisis of 1990-1994
was on the other hand found to have been driven by increased permanent
earnings dispersion, with Gustavsson suggesting explanations such as an in-
crease in the price of skill.

Income inequality has increased since the millennial shift, but the wage
distribution has remained steadily compressed. Instead, the widened income
distribution is argued to have explanations within increased capital income
dispersion, and increased income differentials between employed and unem-
ployed (Gottfries, 2018). While the financial crisis of 2008-2009 seems to
have had little impact on the Swedish labor market as a whole, the recent
evolution of the composition of earnings inequality remains unknown. It is,
therefore, of interest to investigate the potential differences in how the fi-
nancial crisis affected earnings inequality and volatility for men and women.
The crisis is mainly argued to have had impacts on export industries in the
private sector, while stable public finances negated any major shocks on the
public sector. Given the greater female representation within the public sec-
tor, one could hypothesize that the financial crisis had a larger impact on
the structure of male earnings inequality.

Despite its importance for policy design, and the good quality of register
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data available, only a few studies concerning earnings dynamics have been
conducted using Swedish data. Sweden provides an interesting institutional
setting for studying the composition of earnings inequality. The extensive
public sector and collective wage bargaining could distort incentives for hu-
man capital investments and to exert effort in the long run (Edin and Topel,
1997). Additionally, the employment protection act (last hired-first fired)
can be argued to decrease earnings risk for workers of longer tenure, but also
to increase the number of temporary employment schemes and contribute to
labor market segmentation. While there is no legal minimum wage, union
contracts induces a wage floor covering most of the labor market. Since 1998,
such contracts are negotiated on a highly coordinated basis between unions
and employers’ organizations.

Ultimately, we endeavor to estimate an empirical model that can fit the
life-cycle evolution of earnings variability of Swedish employees, decomposed
to distinguish between permanent earnings variability and earnings volatility.
We find evidence for a parsimonious stationary earnings profile specification,
serially correlated by an ARMA(1,1) process. Our results indicate that a
large proportion of overall inequality can be attributed to transitory inequal-
ity, which notes the policy importance of complementary insurance measures
such as social security to compress the earnings differential. A surprising
finding is that permanent inequality does not seem to have increased of any
substantial magnitude throughout the sample period. It is unclear to what
extent human capital accumulation impacts the within-group life-cycle earn-
ings inequality as we find that permanent earnings variability decreases over
the life cycle. Our findings are not therefor not consistent with Mincer’s
human capital theory. Instead we find it probable that high variability of
labor supply among younger workers due to part-time employment during
human capital formation might outweigh wage effects of human capital accu-
mulation. Further, the financial crisis of 2008 seems to have had no apparent
impact on female earnings volatility, while a small increase in permanent and
transitory inequality among men with less than high school and high school
education is noted.

Simulations of income pension entitlements show that the within-group
variability of income pension entitlements is larger for the population with
less than high school education when compared to populations with higher
educational attainment. This observation can probably be attributed to the
fact that contributions to the income pension scheme is subject to an upper
limit derived from the income base amount, which truncates contribution
amounts of higher income groups. This holds true for both the males and
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females.

The remainder of the paper is outlined as follows. We survey a selection
of relevant literature in section 2. Section 3 describes the data and descrip-
tive statistics. We introduce the empirical model in section 4, followed by
an outline of the estimation method in section 5. Results are presented in
section 6. Section 7 contains the simulations of income pension entitlements.
Section 8 concludes.

2 Literature review

Lillard and Willis (1978), Lillard and Weiss (1979), and MaCurdy (1982)
made early and substantial contributions to longitudinal analyses on decom-
posing the individual earnings process into permanent and transitory com-
ponents, establishing the foundations of the heterogeneous income profile
(HIP) and restricted income profile (RIP) specifications and the scholastic
disagreement following thereafter. The HIP model includes idiosyncratic
earnings growth trends in the permanent component, following the theoret-
ical foundation in Mincer’s human capital theory. The RIP model rejects
heterogeneity in income profiles and restricts permanent earnings to be gov-
erned by a unit-root process, implying that any earnings shocks are truly
permanent. Hypotheses on profile specification are commonly tested based
on inference from the covariance structure of earnings, where the permanent
earnings component is identified from higher order autocovariances.

Lillard and Weiss (1979) suggested an empirical model of fixed and time-
varying observable individual characteristics related mainly to labor market
experience. This can be considered the prototype HIP model with stochas-
tic shocks being modeled as serially uncorrelated innovations and subse-
quently instantly mean-reverting in the sense that deviations from the earn-
ings growth trend have zero persistence. MaCurdy (1982) rejects the inclu-
sion of individual heterogeneity in earnings growth in favor of an empirical
model where the earnings process is governed by a unit root. Secondly,
MaCurdy questions the common time series practice of treating initial con-
ditions as known constants due to the relatively small finite time of panels
of earnings. Instead, he considers random initial conditions to represent the
conditions for the ARMA process initiation for a specific individual. This
has implications for a model containing a unit root since any variance accu-
mulated before labor market entry will be incorporated into the variance of
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the initial earnings, leading to an upward bias of estimated early life cycle
earnings inequality. It is common to consider an initial persistent shock in
the estimation procedure to capture the history of the time series prior to the
observations to avoid biased estimates of the evolution of life-cycle earnings
variability.

The disagreement concerning profile specification has remained through-
out various contributions to the literature. Guvenen (2007, 2009) shows that
if individuals are modeled to gradually learn about their earnings process
in a Bayesian fashion, the autocovariance structure of the stationary HIP
process would emulate the observed patterns of a RIP process (i.e. that
autocorrelations are small and negative). He shows that not including in-
dividual earnings trends in the estimation, when they are in fact present in
the real process, leads to an upward bias of the autoregressive parameter.
In the case of high persistence of shocks, this might lead the econometrician
to falsely select the RIP specification. Guvenen (2009) further documents
residual earnings inequality to evolve in a convex fashion over the life-cycle,
which is better fitted by the HIP process compared to the RIP specification.

Not limiting inference to be drawn solely from the autocovariance struc-
ture with regards to the identification of permanent and transtory has al-
lowed for models of individual heterogeneity in more aspects than individual
slope parameters. Meghir and Pistaferri (2004) incorporates ARCH effects
in both permanent and transitory components, emphasizing heterogeneity in
the earnings process beyond individual slope parameters. Browning et al.
(2010) develops a model to account for unobserved heterogeneity by al-
lowing for individual heterogeneity in shock variance, parameter estimates,
stationary/non-stationarity, speed of convergence from initial value to the
residual life-cycle process, as well as individual measurement error. Their
study is based on a deliberately chosen homogeneous sample of danish work-
ers from which they conclude that no one has a unit-root in their earnings
process. They further claim that evidence suggesting a unit-root process in
previous literature is due to the restrictions on heterogeneity. This does not
however reject the presence of a unit root for all workers.

While Browning et al. (2010) declare present evidence to have accumu-
lated against the RIP model, Hryshko (2012) rejects earnings growth het-
erogeneity from PSID data and deems the results of Guvenen (2009) as
non-robust to any minor change in error specifications. Hryshko further
contributes by showing that identification of a hybrid model (A combined
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HIP/RIP model) is possible from small unbalanced samples1. The Hybrid
specification is also suggested in Baker and Solon (2003). Kässi (2014) briefly
discusses the consideration of such a model in his study on Finnish data, but
questions its interpretability2. Gustavsson and Österholm (2014) approaches
the stationary/non-stationary conundrum by employing the method of ap-
proximately median-unbiased estimation introduced in Andrews and Chen
(1994). Inference drawn from a series of individual AR regressions and the
resulting distribution of AR-parameters rejects the inclusion of a unit root
in the true earnings process.

While analyses striving beyond inference from the autocovariance struc-
ture allow for models of more detailed earnings processes, it is motivated
to keep models relatively simple for the purpose of utilizing the results in
calibrations and simulations. While more detailed models would be able to
explain the underlying causes that drive permanent and transitory earnings
components, they go beyond the scope of solely decomposing recent evolu-
tion of earnings variability.

For the purpose of analyzing the evolution of permanent and transi-
tory earnings variability, the factor analysis approach introduced by Moffitt
and Gottschalk (1995) has been extensively employed in contemporary semi-
parametric studies. By introducing time factor loadings, one could identify
what has caused any observed change in inequality: changes in permanent
earnings inequality, in transitory inequality or in both. The factor analyses
approach has since been extended to allow for both time and birth cohort
factor loadings, made evident in papers such as Doris et al. (2013) and Bin-
gley et al. (2013).

Little work has been done on decomposing the evolution of earnings
inequality in Sweden. Gustavsson (2007) examines the observed increase
in earnings inequality following the recession of 1991-1994 throughout the
1990’s. This was subsequently complemented in Gustavsson (2008) who ex-
amines the period of 1960-1990. Sweden famously experienced a substantial
wage gap compression in the 1970’s, which subsequently widened during
the 80’s and 90’s. He employs data from the register database LINDA and

1Guvenen (2007) previously raised concern regarding the evaluation of the HIP-
specification hypothesis based on inference from autocovariance moments calculated from
small samples. This is elaborated upon thoroughly in Hryshko (2012).

2Identification of such a model is also not as straight forward due to the need to
distinguish between the linear time evolution of the unit root from the linear time evolution
of intercept/slope covariance. See equations 21-24 in appendix B.
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concludes that permanent earnings inequality began to decrease before the
introduction of the solidarity wage policy, possibly before 1960 which is the
first year he observes. While a noticeable increase in earnings inequality co-
incided with the aftermath of the abandonment of central wage bargaining in
early 1980’s, Gustavsson finds this to have been driven by increased earnings
volatility rather than by human capital dispersion. This could be considered
a somewhat counterintuitive finding considering the solidarity wage policy
to have discouraging effects on human capital investments, which should re-
verse when abandoning wage compression. Gustavsson (2007) determines
the continued earnings dispersion of the 1990’s was almost entirely driven by
permanent earnings dispersion. The marked shift in earnings inequality took
place during the recession of 1991-1994, evoking the question whether a shift
from increased earnings volatility to human capital dispersion and cemented
inequality might have taken place. It is interesting to note that Gustavsson
(2008) finds earnings variance to evolve as a concave function of experience,
a pattern incompatible with the random growth specification which implies
a convex relationship. He settles with a RIP specification, despite it pre-
dicting earnings variance to increase linearly as a function of time, not in
a strictly concave fashion. Furthermore, Gustavsson and Österholm (2014)
finds evidence against the unit root specification, leaving any conclusions on
adequate profile specification for analyses on Swedish workers pending. This
ambiguity leads us to ask: (1) How has earnings inequality evolved more
recently, and (2) what specification best represents the revealed evolution
of life-cycle inequality of Swedish workers? We thereby contribute to the
literature by seeking evidence for the recent evolution of life-cycle earnings
variability and volatility in Sweden.

3 Data

We employ Swedish register data from the database ASTRID containing data
for the Swedish population born between 1936-1997. Our data set include
longitudinal data for 7,478,807 individuals observed for the period 2002-2015.
ASTRID is a database linking geographical and socioeconomic information
with information from tax records for the Swedish population for birth co-
horts 1936-1997. It was compiled by Statistics Sweden (SCB) and hosted
at the Department of Geography and Economic History at Ume̊a University
(Stjernström, 2011). The main variable of interest was annual earnings de-
fined as cash gross salary measured in 100 SEK, including wage and other
compensations for labor, such as holiday allowances, shares from profits,
travel reimbursements, and similar compensations. There is no truncation at
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the top in the measure of income in this data3. The sources of information
are administrative records which have a number of advantages compared to
survey data. Administrative records are free from non-stochastic sample at-
trition, apart from migration or death, meaning that it does not suffer from
the same attrition issues frequent in survey data, such as the PSID. Fur-
thermore since tax record information does not rely on the memory of the
participants, this data should be less prone to suffer from measurement error
due to misreporting. Employers are also legally obliged to report earnings
amounting to more than 100 SEK to the Swedish tax agency (Skatteverket,
2019). While register data has been used in previous studies of the Swedish
labor market 4, this is to our knowledge the first time that ASTRID data is
used in this context.

3.1 Data selection

Only employees are considered5, the self-employed are not considered during
the years of self-employment due to tax incentives to define earnings as capi-
tal gains rather than labor income and the possibility of private consumption
veiled as corporate expenses6. Additionally, seamen are excluded since their
earnings are not necessarily registered in Sweden and would therefore not
appear in our tax record data. Any zero earnings reported are treated as
missing observations7. We utilize two data selection processes, one referred
to as ”strict” and the other as ”lenient”. The strict selection uses a set of
data selection criteria based on those found in the literature. This makes it
easier to compare our findings with the previous literature. The lenient se-
lection functions as a control giving a measure of the sensitivity of the results
to some potential selection effects.

The strict sample only considers prime age workers between 25-55 years
of age, with valid data on educational attainment. There is no consensus

3An issue in Kässi (2014) for example.
4See for example Gustavsson (2007) and Gustavsson (2008).
5Employed in both the public and the private sectors. Some, for example Bingley et al.

(2013), exclude employees in the public sector and workers with part time employments
from their analyses. Due to institutional factors, such as collective bargaining being the
norm in Sweden, we would argue that the labor market functioning in the public and
private sector are relatively similar. Not excluding the part-time employed is motivated
by earnings, and not wages, being the variable of interest in our analysis.

6Other examples of studies solely considering employees are for example Meghir and
Pistaferri (2004), Kalwij and Alessie (2007) and Bingley et al. (2013).

7This was a result of the logarithm of earnings being the focus of the analysis.
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in the literature regarding the range of ages relevant for consideration in
these type of models. Our chosen range of ages 25-55 is used by Meghir and
Pistaferri (2004) and Bingley et al. (2013). This age span was chosen as we
wanted to focus on individuals with relatively stable labor supply. That only
individuals ages 25 and above are considered reduces some the additional
variability in earnings caused by individuals who combine work with higher
education. The upper bound reduces the probability of individuals either
fully or partially retiring. Other examples are Baker (1997) who included all
aged 21-64 and Gustavsson (2008) who included individuals aged 26-53. The
lenient selection required that individuals have valid data on education, was
at least 25 years old and were born between 1956-1981. This means that the
range of ages observed increases to 25-59, there was no other requirements
for this sample. The restrictions for the lenient sample was made to allow
for comparability of the results with the strict counterparts.
Variation across as well as within cohorts is exploited for the estimation of
the parameters of interest, which increases the importance of the definition
of sample selection criteria by year of birth. We require that each cohort has
at least ten years of viable observations. Bingley et al. (2013) and Sologon
and Van Kerm (2014) use this criteria. It aims to ensure sufficiently long pe-
riods of observations by cohort. Others have used variants of this approach,
for example Baker and Solon (2003) require 9 years of observations per co-
hort and Gustavsson (2008) require 6. A consequence of our 10 year criteria
is that only individuals born between 1956 and 1981 are considered in the
analysis. This reduced the sample size from 3,692,143 to 1,678,904 women
and from 3,786,664 to 1,745,167 men. This criteria combined with the cri-
terion for age meant that some cohorts were not observed all periods in the
strict sample. That some cohorts are not observed for all periods makes the
panel unbalanced. The lower bound on age means that individuals born af-
ter 1977 were disregarded for one or more periods. For example, individuals
born 1978 were not included 2002 and those born 1981 were not considered
over the period 2002-2005. There is a similar truncation as a result of the
upper bound on age which affected the cohorts born between 1956-1959. In
the strict sample, those born 1959 were not considered 2015, and the ones
born 1956 were disregarded over the period 2012-2015 in the strict sample.
Individuals born between 1960 and 1977 are not affected by the restriction
on age in the strict sample.

Individuals are allowed to leave and enter the data on a year to year ba-
sis depending on whether or not they fulfill the criteria during the specific
period. This feature is sometimes referred to as the panel being ”revolv-
ing”. Haider (2001) introduced the terminology of the ”revolving unbalanced
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panel” sometimes used in the literature to describe panels where all cohort
are not observed for all periods and where individuals may enter and exit
freely. This approach mitigates parts of the problem of including females in
the analysis since any maternal leave longer than one year is treated as a
missing observation like long term unemployment Kässi (2014). To analyze
both women and men is relatively uncommon in the literature which primar-
ily focuses on male earnings. Men and women were analyzed separately since
their earnings processes are expected to differ and for increased comparabil-
ity of our results with the previous literature.

To ease the identification of individual earnings profiles, each individual
was required to have valid earning observations for at least five consecutive
years in the strict sample following Bingley et al. (2013). Various criteria
restricting the sample to individuals observed to those relatively well estab-
lished on the labor market have been employed in the literature. Other
examples of similar criteria are restricting the sample to those observed all
years as Baker (1997), only considering individuals that are observed at least
9 years (not necessarily consecutive) as Meghir and Pistaferri (2004) or re-
moving those with 5 or more years of inactivity like Sologon and Van Kerm
(2014). We chose the criteria of Bingley et al. (2013) for our strict selection,
this restricts the analysis to workers well established on the labor market.
This criteria reduced the sample size to 1,317,692 men and 1,330,532 women,
omitting 427,475 and 348,372 individuals respectively.

The top and bottom 0.5% of the yearly income distribution was removed
in the strict sample. This truncation of the distribution of earnings is used
to reduce the influence of outliers. Limitation of extreme observations has
been employed in the literature by e.g. Kalwij and Alessie (2007), Bingley
et al. (2013) and Lochner and Shin (2014) using a 0.1%, 0.5% and 1% limit
respectively. Other methods of reducing the impact of extreme observation
has been used by previous researchers, for example Haider (2001) removed
observations with too high or low hourly wages based on fixed criteria and a
similar approach (although for earnings) was used in Baker and Solon (2003).
Gustavsson (2008) used another alternative method, a criteria based on the
size of earnings in relation to the Swedish ”basic amount”.

Males and females were separated into groups based on years of educa-
tion. Empirical moments were calculated separately for these groups. The
gender and years of education groups were aggregated to larger groups when
we fitted the model. These education groups were individuals with less than
high school education (7-9 years of education), with high school education
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(11-12 years of education), with at least some college education (13-14 years
of education), with a college education (15-17 years of education) and with
participation in doctoral studies (19-21 years of education). Individuals with
doctoral studies were not analyzed in this article. Reasons behind this deci-
sion were that stipends for educational purposes are not classified as taxable
income in Sweden, and would therefore not be included in our measure of
earnings. The number of individuals with this type of education was rela-
tively small, especially among the younger birth year cohorts. We analyzed
these groups separately as the labor market characteristics may differ for
these groups. In our view the functioning of the labor market may differ
for individuals with various levels of education, for example the type of jobs
available and the substitutability of labor. The education level also provide
a proxy for human capital accumulation, as this does not directly enter our
theoretical model8.

Overall the strict filter reduced the sample size to 1,285,470 males and
1,309,667 females. Compared to the literature this can still be considered a
relatively large sample 9. Sample sizes in total and for each education group
can be found in Table 1. It is important to note that the strict selection
seem to disproportionately affect the less educated population. This could
potentially be a sign of non-monetary returns to education, such as job se-
curity and smoother transitions between jobs or between employment and
unemployment.

8See chapter 4.3.
9A previous study in Sweden using register data, Gustavsson (2008), analyzed data

for 76,079 individuals and the sample utilized in for example by Haider (2001) consisted
of only 3,115 individuals drawn from the PSID. Blundell et al. (2015) analyzed data for
934,704 Norwegian men and provide an example of a study using a panel with comparable
scope.
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Men Women

Strict Lenient Strict Lenient

All 1,285,470 1,581,177 1,309,667 1,565,469

College 279,736 326,934 432,163 480,385

Some College 197,311 236,550 204,521 238,830

High School 644,987 781,164 568,107 671,968

Less than HS 138,201 207,750 85,873 152,987

Doctoral 25,235 28,779 19,003 21,299

Table 1: Sample sizes by gender, selection criteria and education groups:
Note: Individuals without valid data on education are not included in any sample.

3.2 Macro facts

Figure 1 depicts yearly average log earnings for men and women, both over-
all and by educational group, for the period 2002-2015. This period include
recent macro economic events such as the aftermath of the dot-com bubble
of 2001, and the 2008 financial crisis. Note that there could be potential
selection effects from the sample aging over the period and that earnings
are in nominal terms when interpreting this figure. For both the male and
female samples there are differences in average log earnings between educa-
tional groups, The most pronounced are the difference between high school
and college educated. Average log earnings are higher for the strict samples
compared to the lenient samples. Males in the strict sample earns on average
1.5% more than their lenient counterparts, this number is 1.3% for females.
There is also a difference in mean log earnings for men and women worth
mentioning. Comparing the average earnings for women and men over all
education groups in Figure 1 and year one find that women’s earnings are on
average 95.0% of their male counterparts in the strict sample and 94.9% in
the lenient. The trends observed for the different data sets are overall similar
with comparable locations.
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Figure 1: Average log nominal earnings 2002-2015
Note: Education groups are: Less than high school (L), high school (HS), some
college (SC) and college (C).

Figure 2 presents the trends in variance of log earnings 2002-2015. The
most striking feature is the downward trend in variance over the years. This
downward trend can be partly explained by selection. As one can observe
in figure 3 and appendix A, we found that variances in income had a ten-
dency to decrease over the early to middle part of the working life. Since we
do not include individuals born after 1981, the share of young workers with
relatively high earnings volatility decreases over time. Gustavsson (2007)
found a similar age pattern in the variance of the transitory component of
earnings in Sweden during the 90’s. The relatively large drop in variance
found among the college educated over the first few years can to some extent
be explained by individuals working part-time while still attending college.
A similar initial drop in variance was found among High-Skilled Norwegian
workers by Blundell et al. (2015). The pattern with decreasing variances
over long periods of the life-cycle is at odds with the theoretical predictions
of the commonly applied HIP and RIP models. Both of these models predicts
increasing variances over the life-cycle, the HIP predicts a weakly concave
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increase while the RIP predict a linear increase. The HIP allows for a tem-
porary drop in variances early in the life-cycle through a negative covariance
between the heterogeneous intercept and growth terms. A negative covari-
ance cannot however outweigh the effects of the heterogeneous growth rates
in the long run due to the limits of correlation.

Variances in the lenient data are larger, as one would expect, with the
largest difference found among the individuals with less than high school ed-
ucation. For each gender the lenient and the strict samples seem to follow
similar general trends although there is some differences between the gen-
ders. The most pronounced is found among the college educated, for men
the variances are initially higher and decreases rapidly until 2008. Although
a downward trend in variances is found among college educated women, the
decrease is less dramatic. An interesting feature is that the variance of earn-
ings for women seem to be less affected by the financial crisis of 2008. One
possible explanation could be the choice of sector of employment differing
between men and women. More women than men are employed in the public
sector (Statistics Sweden, 2019), which is likely to be less sensitive to mar-
ket fluctuations. There is also evidence suggesting that the choice of field of
education differ between men and women and that women to a larger extent
choose degrees related to health and education (Daymont and Andrisani,
1984; Zafar, 2013). These sectors could be considered as being less sensitive
to business cycle fluctuations which could partially explain the observed dif-
ference between men and women. The variances for the more educated seem
to have been affected less by the crisis, this could be due to non-monetary
returns to education such as increased job security.
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Figure 2: Variance log nominal earnings 2002-2015
Note: Education groups are: Less than high school (L), high school (HS), some
college (SC) and college (C).

3.3 Empirical covariances

Figure 3 shows the variance and first three autocovariances for college edu-
cated males from the strict data as an example. The tendency of decreasing
variances in earnings over the life-cycle observed in the data was an unex-
pected finding. Most of the literature, the permanent income hypothesis,
and both HIP and RIP models suggest that variances increases with age or
(potential) experience. Similar patterns were found in the other education
groups and for females as well in the strict data (see Figures 8 - 11 in Ap-
pendix A). For women in the lenient selection, the variances start to increase
again after the age of 55 and for men with high school education it start to
increase around the age of 45. The remaining male education groups in the
lenient data follow patterns similar to the strict data. Deaton and Paxson
(1994) found that inequality in earnings was increasing with age in Great
Britain, the United States and Taiwan. Blundell et al. (2015) found upward
trends in the variance of earnings over the life-cycle for the low- and medium
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skilled male workers in Norway, while for the high skilled they found a steep
downward trend in the early stages, followed by a period of relative stability
with fairly small changes in earnings variance. This pattern is similar to that
found in our data. In his analysis of Finnish earnings Kässi (2014) found
upward trends in earnings variance over the life-cycle among men and down-
ward but less pronounced trends among women. The pattern of variances
increasing as individuals approaches retirement is commonly observed in the
literature. A plausible explanation could be that the supply of labor becomes
more variable during this part of the life-cycle.
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Figure 3: Variance and first to third lag autocovariance of log earnings for
males in the college educated strict sample. Each data point in the represent
the empirical variance,or autocovariance, of earnings for a specific birth year
and years of education group at a certain age.
Note: Plots for the variance and first three autocovariances for all analyzed groups
can be found in Appendix 7.1.
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4 Model

We analyze the dynamics of the residual log earnings in this paper. Many of
the social security systems in Sweden, such as pension, unemployment ben-
efits, and parental allowance, have benefits based on income and earnings
rather than wages. This makes earning dynamics relevant from a policy per-
spective. That collective bargaining is the norm and as Sweden has a rigid
wage structure (Gottfries, 2018) provide further argument for analyzing earn-
ings. By analyzing earnings rather than wages one capture two dimensions of
inequality: inequality of wages and inequality in hours worked (Kässi, 2014).

4.1 Calculation of residual earnings

The residuals, ŷcide, were calculated by removing the yearly means for each
birth cohort- and years of education subset of the data. This ”de-meaning”
approach to estimate residual earnings follows from Baker and Solon (2003).
As the covariance structure of earnings is the focal point of our analysis, the
residual earnings are sufficient for identifying the parameters of interest. In
this paper the residuals are defined as:

ŷcide = Ycide − ycde (1)

Where Ycide is the observed log of earnings calendar year d for individ-
ual i born year c with e years of education and ycde is the year and group
specific sample mean. An alternative method for estimating the residual
earnings is running a separate first stage regression using observable char-
acteristics (e.g. Lillard and Weiss (1979) and Meghir and Pistaferri (2004))
sometimes including polynomials in potential experience or age (see Haider
(2001) and Blundell et al. (2015)). We chose to follow the approach of Baker
and Solon (2003) as it flexibly captures the macro, age and cohort effects on
earnings levels we wish to control for. The subindex e will be suppressed
when discussing the theoretical model and population moments as all years
of education subgroups were modeled the same way.

4.2 Earnings decomposition

Consider the following general model of individual residual log earnings, ŷcid:

ŷcid = yPcid(αi, βi, Xid) + yTcid (2)
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Where the permanent component is denoted as yPcid and encapsulates the
individual earnings profile while yTcid represents the transitory component.
Let αi correspond to individual specific intercepts, a parameter capturing
permanent differences in earnings among individuals. This is common for
both HIP and RIP model specifications and central in our. One could con-
sider αi to measure differences in innate ability or earnings potential among
individuals. The HIP model includes the individual slope parameter, βi, that
regulate individual earnings growth over the life-cycle. This is sometimes
modeled as an effect of human capital accumulation through experience or
as an age effect. In the first case Xid represents the individual level of expe-
rience a given period (e.g. Bingley et al. (2013)) and in the second it simply
represents age (see e.g. Baker and Solon (2003)). Experience is usually mea-
sured as potential experience, i.e years since labor market entry or age minus
years of education, which means that there is a perfect collinearity between
an individuals age and experience causing difficulties combining the two in
the same model. In conformity with human capital theory such as Mincer’s
theory on life cycle earnings and the on-the-job training hypothesis, earnings
growth rates, βi, are usually allowed to be correlated with initial earnings,
αi. If the covariance is negative it would support the idea of the Mincer
cross-over.

The RIP process would reject individual growth trends in favor of a purely
statistical random walk specification. These types of models are calibration
friendly, but lack economic rationale. In the less frequent case of adopt-
ing a model with both a random growth and a random walk component in
the permanent component, the evolution of earnings would follow a random
walk with a drift. Estimation of these types of models has occurred in the
literature (e.g Baker and Solon (2003)), however the interpretation of the
covariance term is less clear with this mixed specification as both the covari-
ance between αi and βi and the variance of the random walk shock evolves
linearly over time, potentially in opposite directions.

The transitory component, yTcid, is a purely stochastic term capturing
earnings shocks that decay swiftly or moderately. This is commonly achieved
by allowing for serial correlation, such as an ARMA(p,q) process where the
AR(p) components captures persistent shocks, and the MA(q) components
captures swiftly decaying shocks.
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4.3 Model specification

We propose an empirical model with a condensed individual life-time earnings
profile. This model can be seen as an augmentation of the one proposed
by Lillard and Willis (1978)10. We define the transitory component in our
model as an ARMA(1,1) process with cohort- and time factor loadings and
a separate labor market entry shock.

ŷcidt = λcγdαi + µcπdτit (3)

τi0 = ξi (4)

τi1 = ρξi + εi1 (5)

τit = ρτit−1 + εit + θεit−1 (6)

[αi, εit, ξi] ∼
(
[0, 0, 0], [σ2

α, σ
2
ε , σ

2
ξ ]
)

In Expression (5), λc and µc are cohort specific factor loadings scaling
the permanent and transitory variances between cohorts. The variables γd
and πd corresponds to time factor loadings that allow for scaling from calen-
dar year specific macro shocks. We used factor analysis in our model since
it allows for permanent and transitory earnings variances to depend on the
calendar year and birth cohort. In this model, index t corresponds to years
of potential experience, measured as years since labor market entry11. The
indexation for years of education, e, have been dropped to ease the notation.

The permanent component is parsimoniously specified simply as αi. This
parameter is assumed to be distributed with mean zero and variance σ2

α. As
there was no clear trend with earning variances increasing with age, neither
linearly nor in a convex manner, the RIP and HIP specifications of the per-
manent wage would impose structures on the data that do not match the
patterns observed. This made it difficult to justify the use of these types of
models. Regarding effects from human capital, this is partially controlled for
by separate analysis of different education groups and αi. The commonly
applied human capital models in the earnings dynamics literature does not
allow for earnings converging over the life-cycle. We do however allow for
some heterogeneity in the permanent component through the factor loadings.

10The inclusion of a separate initial shock, cohort- and time factor loadings and a tran-
sitory component modeled as an ARMA separates our residual earnings model from that
of Lillard and Willis (1978)

11Defined as age - 25 in this model.
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The transitory component, τit, is modeled as an ARMA(1,1) where the
autoregressive (AR) parameter is denoted ρ, θ represents the moving average
(MA) parameter and innovation term is defined as εit. The innovation term
is considered to strictly adhere to earnings shocks and is assumed to be
distributed with a mean of zero and variance σ2

ε . We aim to capture the
initial drop in variance of log earnings observed in the data by including
a shock upon initial entry on the labor market ξi. This initial shock will
have some persistence through the AR(1) process and is assumed to have
a zero mean distribution with the variance σ2

ξ . While the structure of the
transitory components conforms with much of the contemporary literature
the specification of the permanent component shares more similarities with
the model of Lillard and Willis (1978), as it does not include any trend or
non-stationarity in the permanent component.

5 Estimation method

The properties of life cycle earnings are commonly identified by drawing in-
ference from the observed covariance structure of earnings. We used the
general method of moments (GMM) for our estimations. This is a common
method for estimation within the literature12. There are numerous reasons
why GMM is so widely adopted within this literature. GMM can cope with
endogenous regressors, over-identification, and relies on a relatively sparse set
of statistical assumptions. The basic principle is to match the information
observed in the data (the empirical moments) with the predictions made from
a theoretical model (the population moments) so that the distance between
them are as small as possible. An advantage GMM has over the alternative
maximum likelihood (ML) approach is that it does not have to rely on dis-
tributional assumptions for the underlying unobserved counterpart. As the
first order moments are 0 by construction, its utilization does not require
any assumptions regarding the distribution of shocks, which previous evi-
dence suggest not to be normal13.

The empirical moments used in this paper are the estimated second or-
der moments of the residual logarithm of earnings. The moment conditions
were calculated separately for each years of education subgroup, and then
combined into the education groups. The cohorts included in the samples

12See Baker and Solon (2003), Gustavsson (2008), Bingley et al. (2013), Kässi (2014) and
Blundell et al. (2015) for examples of similar studies employing GMM in their estimation.

13Lillard and Weiss (1979) observe slightly left-skewed, fat-tailed errors, and Horowitz
and Markatou (1996) also concludes non-normally distributed innovations.
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were observed for 10-14 periods yielding 55 to 105 second order moments
per subgroup. We present the variance and first three autocovariances in
log earnings aggregated and by education group in Appendix A. Estimates
of empirical moments based on fewer than 30 observations were disregarded
from the analysis. This mainly affected individuals with an 8 year primary
education education14. The theoretical second order moments implied from
the model presented in chapter 4.3 and used for identification of the pa-
rameters will be presented below. The variances from the theoretical model
are:

Vcd0 = λ2cγ
2
dσ

2
α + µ2

cπ
2
dσ

2
ξ (7)

Vcd1 = λ2cγ
2
dσ

2
α + µ2

cπ
2
d(ρ

2σ2
ξ + σ2

ε ) (8)

Vcdt = λ2cγ
2
dσ

2
α + µ2

cπ
2
d

(
ρ2tσ2

ξ + σ2
ε

(
1 + (ρ+ θ)2

1− ρ2t

1− ρ2

))
(9)

The 0 indexation refers to the first year after labor market entry. The
theoretical moments for the autocovariances are:

ACcd0s = λ2cγdγd+sσ
2
α + µ2

cπdπd+sρ
sσ2
ξ (10)

ACcd1s = λ2cγdγd+s)σ
2
α

+µ2
cπdπd+s)

(
ρs
(
ρ2σ2

ξ +
ρ+ θ

ρ
σ2
ε

))
(11)

ACcdts = λ2cγdγd+s)σ
2
α

+µ2
cπdπd+s

(
ρs

(
ρ2tσ2

ξ + σ2
ε

(
1 + (ρ+ θ)2

1− ρ2t

1− ρ2

)))
(12)

The index s refer to the number of lags from calendar year d. These
theoretical moments constitute the elements of the theoretical autocovari-
ance matrix, Ω(Θ). Let ω(Θ) be the half vectorization of Ω(Θ). These were
matched with our vectors of group specific estimates of corresponding em-
pirical moments, denoted φ̂ce. The index e denotes years of education. For

14This particular type of primary education called ”Realskola” disappeared from the
schooling system in 1970.
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a given birth cohort and years of education group the vector of moment
conditions are:

gce(Θ) = E
[
φce − ω(Θ)

]
(13)

The groups were based on year of birth and length of education and Θ
represent the set of parameters from the theoretical model. The empirical
moments were replaced by their sample counterpart (φ̂ce) and the expectation
by the sample mean in the estimation. The vectors of moment conditions
were then aggregated to g(Θ), which contained the moment conditions for
all birth year cohorts and relevant years of education groups. The objective
minimized was the following:

Q(Θ) = g(Θ)′Wg(Θ) (14)

W is a symmetric positive definite matrix, sometimes referred to as a
weighting matrix, which defines the distance between observed and theoreti-
cal quantities. Identification requires that the probability limit of the GMM
objective function is uniquely minimized by a vector of parameter values, Θ0.
If this is the case and the data are such that a law of large numbers apply then
the GMM estimator is consistent and asymptotically normal. In theory any
symmetric positive definite matrix could define W and yield consistent esti-
mators. One method is to use consistent estimates of the covariance matrix
of the moment conditions as W, for example the two-step GMM proposed
by Hansen (1982). This method is asymptotically consistent and efficient,
but has been found to be biased in small samples (Altonji and Segal, 1996;
Clark, 1996). Evidence suggest that the bias is increases when estimating
models with a large number of overidentifying restrictions or when fitting
a model to data drawn from distributions with fat-tails (Altonji and Segal,
1996). Our models have a large numbers of overidentifying restrictions and
Lillard and Weiss (1979) found evidence suggesting that shocks to earnings
could be drawn from skewed and fat-tailed distributions. The size of the
weighing matrix provided some additional practical problems to implement
optimal GMM, each of the 25 birth year cohorts produce up to 105 moment
conditions and all education groups include at least two years of education
subgroups for which the empirical moments have been calculated separately.
This dissuaded us from implementing optimal GMM in our estimations.

The equally weighted minimum distance (EWMD), where W is defined
as the identity matrix, is an alternative method commonly used in the lit-
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erature related to the covariance structure of earnings15. Baker and Solon
(2003), Gustavsson (2008), Bingley et al. (2013) and Blundell et al. (2015)
are examples of studies employing this method for estimation. This approach
was considered but not implemented for this paper. There was large vari-
ations in the size of the underlying sample when calculating the empirical
moments, these sub-samples had sizes ranging from 30 to 23017 individuals.
Our view is that the inference should be drawn from where the evidence is
the strongest and using EWMD would mean that all moment conditions are
given the same importance regardless of the precision of the estimate or the
size of the underlying sample for estimation16. The moment conditions were
instead weighted using a diagonal matrix with the inverse of the variance of
the empirical moments. As a result, the more precisely estimated empirical
moments are given priority in the optimization. The smaller the standard
error for the empirical moment the larger the value of the moment condition
becomes17.

All statistical computations where conducted with the software R and the
package ”BB” was used for the optimization procedure. Standard errors were
calculated using the delta method. This method uses a first order Taylor ap-
proximation and the asymptotic normality of the estimator to approximate
the variance of the estimates (see Oehlert (1992) for a review of the method).

6 Results

The core parameters of the residual earnings model are presented in Ta-
ble 2 for male samples and Table 3 for females. The proportion of overall
earnings variance attributable to permanent inequality by birth year cohort
is presented in figure 4 while estimated cohort and time factor loadings are
presented in figures 5-8. This was done to present the trends over time and be-
tween cohorts more clearly. In Appendix D the distribution of observed- and
predicted moments is presented for each analyzed subsample. This allows for
comparison between the observed and predicted moments and demonstrates

15For a more general discussion see Chamberlain (1983).
16We tested the estimating procedures using EMWD and using the some college males

subset of the data and found that the estimates for the strict selection were robust to a
change in the weighing matrix.

17We checked the sensitivity for the choice of weighting matrix and estimated the model
using EWMD for the male and female cohorts with some college education from the strict
sample and found that the results, apart from the signs of the MA(1) parameters, were
qualitatively unaffected.
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how the model fits the data. The full set of estimated birth cohort and time
factor loadings can be found in Table 4-7 in Appendix E.

6.1 Core model

One important parameter in the core model is the variance of the heteroge-
neous intercepts, σ2

α. A pattern common to both genders is that the variances
are higher for the lenient selections compared to their strict counterparts. A
possible explanation of this difference is the selection of individuals relatively
well established on the labor market 18. This can be related to the finding of
Gottfries (2018) that increasing income differentials between employed and
unemployed can partly explain observed increases in income inequality, while
wage differentials have remained seemingly rigid. There is an interesting dif-
ference in the patterns for women and men regarding the estimates of σ2

α. For
men, the variance of the permanent earnings differences seem to be increas-
ing with education while there is a tendency toward an opposite pattern for
women. The difference in the effect of education between men and women
is a bit puzzling but could potentially be a result of factors such as choice
of fields for education or line of business being different between men and
women on an aggregate level. For instance, women are to a larger extent
than men hired in the public sector, with an overrepresentation primarily in
employments at county and municipal level (Statistics Sweden, 2019). These
sectors have a more compressed wage structure than the private sector in
Sweden (Statistics Sweden, 2018).

Analyzing the AR(1) parameter estimates, one find that all estimates are
significantly smaller than unity. This is in conformity with the findings of
Gustavsson and Österholm (2014) that Swedish earnings are not governed
by a unit-root process. The estimates are all positive and relatively small
for all samples, sizes ranging from 0.335 to 0.441. These estimates for the
AR(1) parameter are smaller than that of Gustavsson (2007), who found an
AR(1) of 0.555, and of Gustavsson (2007) who found an AR(1) parameter
of 0.8190 for years 1960-1967, and 0.5726 for 1968-1990. Our estimates for
the AR(1) parameter is similar in size to those found by Lillard and Willis
(1978). The AR(1) parameter can be interpreted as regulating the effects

18The requirement of five consecutive years of valid observations for earnings excludes
individuals that are more prone to being long term unemployed as well as individuals
that regularly switch between being self-employed and employed. One could argue that
transitions in and out of employment, or in and out of self-employment, could have long
term effects on earnings that are not captured in this model.
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historical shocks have on expected future earnings. Since all estimates are
positive, one can interpret it in terms of what proportion of historical shocks
is expected to persist in the next period. An AR(1) parameter of 0.5 implies
that transitory shocks to earnings linger between periods and accumulates,
but the effect of each shock is decaying and is expected to be halved each year.
These findings suggest that a relatively short longevity of shocks to earnings
among Swedish workers. Relating our estimates to Gustavsson (2007, 2008),
transitory shocks seem to have become less persistent over the time horizon
of 1960-2015. It is however important to note the difference in profile speci-
fication between the models, given the exclusion of a unit root in our model.

The estimates for the MA(1) process are less systematic, depending on
the sample the MA(1) parameter can be negative or positive. Most estimates
are relatively small in absolute value, the largest being -0.121 estimated for
the strict sample for females with less than high school education. In the fe-
male samples, the estimates for the all education groups exempt the college
educated are negative. When it comes to the variance of the ARMA(1,1)
shocks, then there is a clear difference between the males and females re-
garding the estimates. The estimates for the female samples are larger than
those for their male counterparts. Another pattern is visible when comparing
the strict and the lenient selections. The variance of the ARMA(1,1) pro-
cess is larger for the lenient selection. This can partly be explained by the
truncation of the earnings distribution in the strict samples. The restriction
to only consider those relatively well established on the labor market in the
strict sample provide another plausible explanation.

Analyzing the estimated variances for the initial shocks upon entering
the labor market σ2

ξ one find that these are significantly larger for the lenient
selection when compared to their strict counterparts. This can also be ex-
plained by potential selection effects. For the male samples then the initial
shock is systematically larger than the variance of the ARMA(1,1) shock.
This could be interpreted as the earnings for initial year on the labor market
being more volatile than subsequent years. The same pattern was however
not observed for females.

6.2 Permanent and transitory variability

The share of variance in earnings attributable to permanent relative to transi-
tory variance (Prop. Perm in table 2 and 3) is of interest because of its policy
implications. In order to compare the relative contribution of the permanent
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and transitory components to overall earnings variability we predicted how
much of the overall variance is attributable to the permanent component
based on all parameter estimates. This measure is labeled as Prop. Perm in
Table 2 and 3.

For all samples, the estimated permanent component contributes less
to the overall variability of earnings than its transitory counterpart. The
largest proportion was found among college educated men in the strict se-
lection. In this group 42.1% of overall variability of earnings is estimated to
be attributable to permanent variance. The smallest proportion was found
among females with college education in the strict selection. This group had
a 22.7% proportion of overall variability that was attributable to permanent
differences. Comparing the estimates for men and women one finds that the
relative importance of the permanent variance seem to be higher among men.
This could possibly be a result of higher variability in the supply of labor
among women. The proportion of overall variability attributable to the per-
manent inequality is lower in the lenient samples. This result was expected
as these samples include additional individuals that are less established on
the labor market. The difference between the strict and lenient samples is
however larger for men than for women.
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Figure 4: Proportion of overall variance in earnings attributable to perma-
nent inequality.
Note: Education groups are: Less than high school (L), high school (HS), some
college (SC) and college (C).

If one decomposes the proportion of overall variance in earnings attributable
to permanent differences by birth year cohort one find a difference between
the older and younger cohorts, where the younger cohorts have a higher
proportion of transitory variability than their older counterparts. This is
consistent with younger workers being more mobile on the labor market.
The largest differences between cohorts can be found for the more educated
workers in the male samples.
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Figure 5: Cohort factor loadings Male Samples.
Note: Education groups are: Less than high school (L), high school (HS), some
college (SC) and college (C).

6.3 Factor loadings

By analyzing the factors loadings it is possible to see how the decomposi-
tion of inequality differs between younger and older cohorts, and how the
proportions of permanent and transitory inequality have changed over the
observed time period of 2002-2015. The cohort factor loadings describe the
size of the permanent- or transitory variance and autocovariances of a spe-
cific cohort subsample in relation to the groups born 1956. The time factor
loadings describes the relative size of the permanent- and transitory variance
and autocovariances for a specific year with 2002 as the reference.
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Figure 6: Cohort factor loadings Female Samples.
Note: Education groups are: Less than high school (L), high school (HS), some
college (SC) and college (C).

Concerning cohort factor loadings, both the strict and lenient samples in-
dicate that that younger cohorts have relatively more volatile earnings than
older cohorts. This is true for both male and female samples and can be
considered intuitive since younger workers are expected to be more mobile
between work places, partially induced by hiring/firing restrictions, and by
frictional unemployment due to a higher tendency for younger individuals
to voluntarily switch job places. The timing of labor market entry with
respect to the financial crisis could potentially contribute to this, as the un-
employment risk for young workers increased more relative to other groups
during the financial crisis (Statistics Sweden, 2014). This could potentially
be explained within the institutional setting of the employment protection
act which regulates firms to follow a last hired - first fired principle. Since
we are unable to control for hours worked, we should also expect the pres-
ence of individuals working part-time to financially support their educational
commitments to inflate the estimates of earnings volatility among younger
workers. This finding is further supported by Björklund (1993) who con-
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cludes that the correlation between annual income and life-time income is
lower for younger workers than for older workers.

While both female and male samples are characterized by transitory factor
loadings increasing for the younger cohorts, there are differences worth not-
ing. For females, the increase is almost linear as revealed by both strict and
lenient samples and the different educational groups follow similar patterns.
From Figure 5 and 6, one can see that the smaller contribution of permanent
inequality to the overall earnings inequality for the younger cohorts, as seen
in Figure 4, can to a large extent be explained by higher levels of transitory
inequality for these groups. For the strict male sample of college graduates,
the increase is seemingly linear for birth cohorts 1956-1972, convex for birth
cohorts 1973-1977, and seem to remain at a higher level for birth cohorts
1978-1981. Regarding the increase for individuals with less than high school
education, the evolution is initially similar to the one observed for college
graduates with a less dramatic increase for the younger cohorts. The change
in transitory inequality is smallest for high school graduates. The high tran-
sitory inequality observed for male college graduates could be explained by
the fact that it is common to enter the labor market before graduating from
college. The earnings that we observe for the younger cohorts with college
education could therefor include individuals working part time to a greater
extent than within other education groups that have graduated before the
age of 25. Differences in transitory inequality between educational groups
for female cohorts are not as pronounced, although the change in transitory
inequality between cohorts have been largest for the college educated groups.

Regarding the permanent cohort factor loadings for women, the increase
in transitory inequality for the youngest cohorts have to some extent been
mirrored by a decrease in the factor loadings for the permanent variance.
This could be either trends in the nature of income inequality between co-
horts or a result of weak identification when simultaneously estimating both
permanent and transitory factor loadings. The estimates are more volatile
in the lenient data, where the permanent factor loading for college educated
women born 1980 provide an example of an outlier.

The increase in the transitory variance for males is less systematic and
there is no clear downward trend in the permanent factor loadings. For the
college educated and individuals without high school education in the strict
sample the transitory factor loadings increases relatively slowly for cohorts
born between 1956-1972. After that the transitory factor loadings start to
increase rapidly for the college educated peaking for those born 1977. For
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the high school educated the evolution of the factor loadings is less dramatic,
it is larger for the younger cohorts but the difference is not as large as for the
other education groups. In the lenient data then the trends for the transitory
variances are less clear. For individuals with less than a high school degree
and the college educated the factor loadings increase for the younger cohorts,
much like the other samples. During the latter part of the 1970s there is a
large increase in transitory variance for the college educated, similar to that
found in the strict sample but smoother. However, for the high school edu-
cated the transitory variance is initially decreasing and cohorts up till those
born 1976 have smaller factor loadings than the 1956 cohort.

In the strict sample for men, the permanent factor loadings are relatively
stable, especially among the college educated and those without high school
education born between 1956-1974. After that there is a general decrease for
both groups, although for the college educated there is a rebound in 1978.
For the high school educated one see a relatively steady downward trend
similar to that found for the females. In the lenient sample the high school
educated follow a relatively stable pattern similar to that found in the strict
sample and the individuals with less than high school education the factor
loadings fluctuate around 1 without any clear trend. The permanent factor
loadings for the college educated are relatively stable for cohorts born be-
tween 1956 - 1978, after that there is a sharp almost linear decline for the
remaining cohorts.
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Figure 7: Time factor loadings Male Samples.
Note: Education groups are: Less than high school (L), high school (HS), some
college (SC) and college (C).
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Figure 8: Time factor loadings Female Samples.
Note: Education groups are: Less than high school (L), high school (HS), some
college (SC) and college (C).

For the time factors presented in Figure 6 and 7 one of the most striking
features is the small impact from the 2008 financial crisis on the volatility
of earnings. There is a small increase in the permanent and transitory vari-
ability for the less than high school and high school educated males, most
prominently in the strict sample, while the crisis had no apparent impact
on the volatility of female earnings. The financial crisis of 2008 mainly af-
fected Swedish exports, and one could hypothesize that employment in the
protected public sector implies less earnings risk in times of economic reces-
sion, explaining the results for females. The trends and changes in values
at the time of the crisis is smaller in the lenient sample, when compared
to the strict. This could possibly be an effect of higher rates of long-term
unemployment (more than a year) in these samples.
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7 Simulation of Income pension entitlements

The Swedish public pension underwent a major structural transition in the
1990’s from a defined benefit plan, to a combined pay-as-you-go notional de-
fined contribution (income pension), financial defined contribution (premium
pension), and defined benefit scheme (guaranteed pension). The reform im-
plied that a larger risk for ensuing sufficient individual pension funds is now
placed on people themselves. Entitled annuities are to a greater extent de-
cided by life-time income rather than weighted from top income years, as
with the old system (Palmer et al., 2000). We limit our application to only
encompass features of the income pension scheme.

As with any notional defined contribution plan, individual contributions
are registered as future entitlements rather than money being deposited into
an actual fund. Payments are instead used to support solvency for with-
drawn benefits. Each year, the individual receives a balance statement of
entitlements and a projection of future pension wealth based on earnings
history. The earnings profile will subsequently be a central feature in any
prediction of future pension entitlements for individuals. Related to model
specification, the conventional RIP process would assume the variability of
pension contributions to increase linearly over the life-cycle, while a station-
ary process as found evidence for in this process would imply a cohort-specific
constant contribution variability adjusted by year factors.

Furthermore, earnings extrapolations are of importance not only for in-
dividual projections, but also for forecasting financial solvency on the aggre-
gate. This would be a suggested topic for future studies, given the lingering
challenges for welfare states associated with balancing accounts as longevity
increases and fertility rates declines. Since we only analyze earnings and
omit other income sources such as capital income and transfers, we limit this
application to an approximation of individual entitlements and the sample
distributions.

7.1 Simulation procedure

Simulations are conducted for each gender and education group sub-sample
of both the lenient and strict selection used to estimate the life-cycle model
of earnings. For each sub-sample, 10000 simulations are conducted. Indi-
viduals are assumed to register their first labor income at age 25, full-time
retire at the age of 65, without the possibility to re-enter the labor market
post-retirement. We assume no partial withdrawals of funds prior to the
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age of 65. Death is assumed to be inflicted with certainty, and we set the
longevity parameter to correspond to the cohort-specific life expectancy af-
ter the age of 65. We calculate life expectancy as the average of male and
female life expectancy to emulate the gender neutrality of the annuitization
divisor utilized by the Pension agency. Our birth cohort span of 1956-1981
only includes cohorts fully integrated into the post-reform scheme.

Since our simulations only concern earnings, the contributions to the pen-
sion account balance are entirely derived from individual life-time earnings.
Pensionable income is proxied by 93 percent of simulated earnings, for which
a fixed rate of either 0.185 (for income registered prior to 1995) or 0.16 is allo-
cated to the individual pension account balance. For years in retirement, the
pension account balance is divided by the number of years in retirement and
registered as annuities. Since pensionable income is not relegated to earnings
only, but also capital gains and various transfers, this is a simplification of
the true pension fund accumulation process. Furthermore, any innovations
are assumed normally distributed.

Pensionable income is further limited to amounts qualifying as taxable
income (43.2 % of the price base amount), and can not surpass 7.5 times
the income base amount. As of now, we extrapolate the price base amount
and income base amount to proportionally follow the evolution of projected
GDP/capita growth. This subsequently truncates extreme contributions to
the notional accounts.

Given the high degree of uncertainty involved in long-run forecasts of
the macro environment it is common in micro-simulations to use static as-
sumptions regarding macroeconomic variables. With our aim being to model
entitlements, and not aggregate financial solvency, we deem a simple macroe-
conomic scenario as adequate in line with (Moore and Mitchell, 1997). Rather
than purely stylized values for economic growth, we assume growth to follow
the projections of MIMER19 (see table 1), a general equilibrium model with
overlapping generations employed by the Swedish ministry of Finance (Fi-
nansdepartementet). While MIMER does not explicitly account for business
cycle fluctuations, it integrates demographics change which is commonly used
as a predictor for business cycle fluctuations as in Röstberg et al. (2005). To
project yearly mean earnings beyond our observed time period, we conduct
an OLS regression of yearly mean earnings on GDP/capita, education dum-
mies and cohort dummies.

19For a detailed description of MIMER, see Almerud (2018).
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1980-2013 2014-2024 2025-2034 2035-2044 2045-2060

1.7 1.6 1.5 1.8 1.8

Table 4: Historical and forecasted average annual GDP per capita growth
(%)

7.2 Simulation results

Given the extensive number of simulations conducted, we present a selection
of results. Figure 9 depicts the simulated distributions of the first pension
entitlement for each education group of both male and female gender born
in 1970, given estimates from the strict selection.

Figure 9: Distribution of male and female pension entitlements over educa-
tion groups (birth cohort 1970)
Note: Education groups (Ed.G) are: Less than high school (L), high school (HS),
some college (SC) and college (C).

Pension entitlements of both college groups are more evidently subjects
of the truncation due to the upper limits of contribution amounts, ultimately
reducing the overall variability of pension entitlements. The population with
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less than high school education displays relatively higher within-group vari-
ability compared to both high school educated and both college groups prob-
ably due to fewer recorded earnings higher than the upper limit amount for
pensionable income.

The pension entitlements for females over education group follow the
same overall pattern as the male counterpart with generally higher entitle-
ments for higher educational attainment. However, it is interesting to note
that the female college groups are not visibly as bound by the upper limit
to pensionable income as the male college groups. Ultimately, the within
education group-variability is less dispersed compared to the male groups.

7.3 Sensitivity

We illustrate the role of the permanent-transitory framework in predicting
the distributions of pension entitlements by varying the parameters as iso-
lated events. Figure 10 illustrates how the distribution of pension entitle-
ments vary with the AR-parameter and the MA-parameter respectively.

One would expect that changing any of the ARMA parameters would
not affect the distribution, conditional on that the model remains stationary
and innovations are normally distributed and of moderate persistence. This
is confirmed by our analysis. However, when the AR-parameter approaches
unity and shocks tend to maximum persistence, the distribution of pension
entitlements become less dense around the mean and eventually collapses
into two distinct humps indicating a substantial polarization of entitlements.
It is likely that these humps are a product of truncation due to the limits of
pensionable income.
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Figure 10: ARMA parameters
Note: Rho = AR-parameter, Theta = MA-parameter. Baseline parameterization
follows from the strict selected male sample of the 1970 birth cohort. 10000 simu-
lations were conducted for each parameterization.

Since pension entitlements are derived from life-time earnings, it is ex-
pected that the life-cycle profile will contribute more relative to transitory
earnings fluctuations in determining the distribution of entitlements. Figure
11 illustrates how variations in the variance of the earnings profile and the
variance of the earnings shock affects the distribution.

An interesting finding is that while an increased permanent variability
implies a wider distribution of pension entitlements, an increased transitory
variability contracts the distribution. It could be possible that the expla-
nation for this peculiarity lies within the truncation of pensionable income:
With larger variability of earning shocks, individuals with low initial earn-
ings might experience positive enough earnings shocks which renders their
income as qualifiable as pensionable income on a more frequent basis than if
the variability of transitory shocks is small.
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Figure 11: Variance of the earnings profile and the transitory shock
Note: Baseline parameterization follows from the strict selected male sample of the
1970 birth cohort. 10000 simulations were conducted for each parameterization.

Overall, the variability of the permanent component is found to be the
largest contributing source to the distribution of pension entitlements. How-
ever, given the surprising finding that transitory inequality contributes to
contract the distribution of pension entitlements, it’s omission could lead to
an overestimation of pension inequality. As long as the model is stationary
with moderate persistence, the ARMA parameters does not clearly affect the
distribution.

8 Conclusions

We have analyzed annual earnings for people born between 1956-1981 in
Sweden during the years 2002-2015. The goal was to assess to what extent
variations in earnings can be attributed to long term differences between
individuals contra short term instabilities. Analyzing different educational
groups, both men and women, and partially controlling for selection effects
we aspired to characterize earnings dynamics in Sweden.

Comparing the relative sizes of the transitory and permanent variances
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we found that the variance of the transitory component was substantially
larger than its permanent counterpart. Furthermore, we found larger perma-
nent variances among the higher educated males and less educated females.
In turn, this information is relevant for the design of policies aiming to coun-
teract high variability in earnings. If the shocks are of a transitory nature
then social insurances, such unemployment benefits, could provide adequate
policy instruments. Counteracting variance in earnings of a more persistent
or permanent nature would require other policy actions, such as redistribu-
tion via the tax system.

Another interesting finding was the similarities in the dynamics of the
earnings process found between education groups and gender. Even though
the parameter estimates differ between the regressions, the general patterns
are strikingly similar. The largest variations are found for the estimates of
the variance of the ARMA(1,1) process.

The traditional HIP and RIP specification of the permanent income does
not in our view provide an obvious fit to the Swedish data. One of the most
striking features found in our data were declining, or at the very least not in-
creasing, variances in earnings over the life-cycle. Although the model used
is parsimonious, it manages to explain the patters found in the data rela-
tively well and yields estimates that are consistent across different education
groups, sample selection criteria and genders20.

One can argue that the model could be complemented with additional
variables, especially a more comprehensive trend, but these augmentations
might have to look beyond the traditional HIP/RIP framework. A possible
extension to the model would be to add a component allowing for a decrease
in the permanent variance over the life cycle as well or include variables for
the short and long term effects of general versus vocational education. An-
other approach would be to model transitions in and out of employment,
allowing for the effects of long term unemployment to contribute to the earn-
ings dispersion. Further research is needed for better understanding of the
earnings process of the Swedish labor market; for instance by estimating a
more structural model including factors such as transitions between employ-
ment and unemployment.

The role of human capital accumulation in the within-group variation

20Plots for regression fit and residual distribution can be found in Appendix D, figures
28-31
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of earnings over the life-cycle is not obvious in our analysis. The compres-
sion of earnings over the carrier observed cannot be explained solely by a
Mincerian-crossover effect. A possible explanation could be the Swedish
wage bargaining model limiting wage dispersion within groups (Edin and
Topel, 1997). The variability of earnings could be driven by the variation in
hours worked, where the younger individuals could be more likely to have
part-time employments and therefore more volatile working hours than older
better established workers. This could potentially counteract and dominate
any wage effect of human capital accumulation. While the evolution of per-
manent earnings inequality observed during the 1990’s has been ascribed an
increase in skill prices Gustavsson (2007), it could be questioned whether
this has continued given our findings that permanent earnings inequality has
not increased of any substantial magnitude.

From simulations of income pension entitlements, we find that the within-
group variability of college educated is lower relative to less educated groups.
We conclude this to follow from higher educated individuals being more fre-
quently bound by the the upper limits of pensionable income. This holds
true for both males and females, but the within education group-variability
is less dispersed for females compared to males. From a sensitivity analysis
we conclude the variability of the earnings profile to be the major contributor
to overall pension inequality, but also that earnings risk has a contracting
effect on the distribution of entitlements which motivates its inclusion when
forecasting pension entitlements.
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Appendix B: Functional properties of HIP, RIP and hy-
brid specifications

Consider the very basic random growth specification of residual earnings
where experience is proxied by time.

ŷt = αi + βit+ εt (1)

V0 = σ2
α + 2σαβt+ σ2

βt
2 + σ2

ε (2)

Which corresponds to a second degree polynomial in experience. To de-
termine its functional properties, we examine the first and second derivative
of the variance expression with respect to a change in time.

∂V0
∂t

= 2σαβ + 2σ2
βt (3)

The first derivative is allowed to be negative initially due to the ambiguity
concerning the covariance, but will eventually turn positive.

∂2V0
∂t2

= 2σ2
β (4)

Since σ2
β is limited to positive values, V0 has to be convex in time for it

to be compatible with the random growth specification.

Now let’s introduce a random walk component to the random growth speci-
fication in equation (15).

ŷt = ŷt−1 + αi + βit+ εt (5)

V0 = σ2
α + 2σαβt+ σ2

βt
2 + tσ2

ε (6)

The variance of this specification evolves linearly by both the covariance
term and by the variance of the innovation. This invokes an identification
problem as it is not obvious how these components could be separated and
subsequently identified from the autocovariance matrix.

∂V0
∂t

= 2σαβ + 2σ2
βt+ σ2

ε (7)

∂2V0
∂t2

= 2σ2
β (8)

This model would also fall short for explaining any variance evolution
other than a convex function due to the statistical limit of variances being
positive.
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Appendix C: Bias induced by white Gaussian noise on
the serially correlated innovation process

Consider the following MA(1) process, zt.

zt = ηt + φηt−1 (9)

η ∼ iid(0, σ2
η) (10)

In first differences, the innovation of such process will only affect the first
and second order autocovariance moments.

γ0 = E[∆z2t ] = σ2
η(1 + φ2) (11)

γ1 = E[(∆zt)(∆zt−1)] = φσ2
η (12)

Next we compare the evolution of such a process with another moving
average process, xt, altered to contain an additional white noise term.

xt = εt + θεt−1 + et (13)

ε ∼ iid(0, σ2
ε ) (14)

e ∼ iid(0, σ2
e) (15)

With corresponding first and second order autocovariance moments:

ψ0 = E[∆x2t ] = σ2
ε (1 + θ2) + σ2

e (16)

ψ1 = E[(∆xt)(∆xt−1)] = θσ2
ε (17)

Finally we compare the ratios of moments of both processes.

γ1
γ0

=
φ

(1 + φ2)
(18)

ψ1

ψ0

=
θ

(1 + θ2 + (σ2
e/σ

2
ε ))

(19)

θ

(1 + θ2 + (σ2
e/σ

2
ε ))

≥ φ

(1 + φ2)
(20)

lim
σ2
e→0

φ = θ (21)

Only if σ2
e goes to zero, φ will provide an unbiased estimator of θ. This

should be of concern mainly for survey data, as the objective nature of register
data should minimize its occurrence.
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Appendix D: Model fit and residuals
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Figure 1: Predicted and observed second order moments males.
Note: Right hand column corresponds to the strict samples and the left to the
lenient.
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Figure 2: Predicted and observed second order moments females.
Note: Right hand column corresponds to the strict samples and the left to the
lenient. xxi
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Figure 3: Residual between predicted and observed moments males.
Note: Right hand column corresponds to the strict samples and the left to the
lenient. xxii
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Figure 4: Residual between predicted and observed moments females.
Note: Right hand column corresponds to the strict samples and the left to the
lenient. xxiii



Appendix E: Factor loadings

Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

λ1956 1 1 1 1 1 1 1 1
- - - - - - - -

λ1957 0.934 0.962 0.985 0.997 1.01 1 1.026 1.088
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

λ1958 0.94 0.94 0.987 0.992 0.987 0.992 1.025 1.026
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1959 0.956 0.978 0.953 0.975 0.973 0.982 1.054 1.072
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1960 0.931 1.001 0.972 0.965 0.994 0.987 1.091 1.072
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1961 0.997 1.044 1.038 0.976 0.975 0.994 1.06 1.06
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1962 0.962 1.033 1.018 0.954 1.025 0.999 1.036 1.047
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1963 1.023 1 0.951 0.958 0.99 0.991 1.079 1.079
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1964 0.971 1.036 0.926 0.9 1 0.989 1.067 1.051
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1965 0.978 1.051 0.919 0.908 0.988 0.966 1.129 1.057
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1966 1.004 1.132 0.895 0.939 0.952 0.947 1.054 1.016
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1967 0.995 1.05 0.887 0.911 0.96 0.98 1.037 0.994
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1968 1.002 1.07 0.864 0.841 1.017 0.943 0.982 0.967
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1969 1.013 1.094 0.876 0.836 0.957 0.927 1.003 1.029
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1970 1.009 1.063 0.869 0.844 0.959 0.922 0.991 0.947
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1971 1.021 1.11 0.866 0.832 0.942 0.988 1.065 0.932
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1972 1.01 1.09 0.859 0.88 0.963 0.945 0.989 0.94
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1973 1.025 1.124 0.916 0.834 0.938 0.935 0.966 0.913
Continued on next page
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Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
λ1974 1.068 1.176 0.843 0.839 0.935 0.938 1.097 1.003

(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
λ1975 1.02 1.147 0.867 0.822 0.935 0.975 0.926 0.861

(0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
λ1976 1.122 1.243 0.837 0.802 0.867 1.001 0.851 0.847

(0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
λ1977 1.052 1.174 0.766 0.785 0.831 0.887 0.793 1.068

(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
λ1978 0.988 1.111 0.795 0.794 0.827 0.969 1.156 1.251

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
λ1979 0.987 1.058 0.802 0.796 0.849 0.93 0.788 0.988

(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
λ1980 1.012 1.172 0.811 0.806 0.854 0.971 0.86 0.553

(0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002)
λ1981 1.111 1.15 0.795 0.793 1.023 1.04 0.927 0

(0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (259.538)
µ1956 1 1 1 1 1 1 1 1

- - - - - - - -
µ1957 0.982 0.978 1.023 0.982 1.119 1.008 1.139 0.989

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)
µ1958 1.008 0.969 1.044 0.987 1.142 0.989 1.186 1.011

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)
µ1959 1.09 1.001 1.1 0.973 1.162 1 1.219 0.979

(0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)
µ1960 1.176 1.011 1.094 0.995 1.161 0.984 1.337 1.012

(0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
µ1961 1.156 1.06 1.073 0.972 1.209 1.033 1.342 1.009

(0.000) (0.002) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000)
µ1962 1.165 1.029 1.084 0.968 1.176 0.98 1.347 1.056

(0.000) (0.002) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)
µ1963 1.167 1.048 1.081 0.95 1.206 1.044 1.459 1.081

(0.000) (0.001) (0.000) (0.000) (0.001) (0.002) (0.001) (0.001)
µ1964 1.205 1.1 1.078 0.928 1.223 0.994 1.489 1.088

(0.000) (0.002) (0.000) (0.000) (0.001) (0.002) (0.001) (0.002)
µ1965 1.243 1.093 1.074 0.923 1.185 0.976 1.425 1.131

(0.000) (0.002) (0.000) (0.000) (0.001) (0.002) (0.001) (0.002)
Continued on next page
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Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

µ1966 1.268 1.121 1.092 0.92 1.207 0.964 1.472 1.102
(0.000) (0.003) (0.000) (0.000) (0.001) (0.002) (0.001) (0.002)

µ1967 1.273 1.145 1.068 0.889 1.212 0.99 1.512 1.098
(0.000) (0.004) (0.000) (0.000) (0.001) (0.002) (0.001) (0.003)

µ1968 1.384 1.215 1.109 0.931 1.25 1.04 1.603 1.144
(0.001) (0.005) (0.000) (0.000) (0.001) (0.002) (0.002) (0.003)

µ1969 1.322 1.175 1.042 0.887 1.304 1.042 1.641 1.146
(0.001) (0.005) (0.000) (0.000) (0.001) (0.002) (0.002) (0.002)

µ1970 1.358 1.206 1.05 0.89 1.358 1.048 1.575 1.199
(0.001) (0.006) (0.000) (0.000) (0.001) (0.002) (0.002) (0.003)

µ1971 1.421 1.186 1.075 0.912 1.458 1.104 1.57 1.179
(0.001) (0.004) (0.000) (0.000) (0.001) (0.002) (0.002) (0.004)

µ1972 1.335 1.196 1.095 0.903 1.415 1.129 1.707 1.204
(0.001) (0.005) (0.000) (0.000) (0.001) (0.002) (0.002) (0.004)

µ1973 1.38 1.237 1.078 0.922 1.581 1.173 1.726 1.256
(0.001) (0.005) (0.000) (0.000) (0.001) (0.002) (0.003) (0.005)

µ1974 1.457 1.273 1.193 0.948 1.627 1.26 1.744 1.266
(0.001) (0.006) (0.000) (0.000) (0.001) (0.002) (0.003) (0.005)

µ1975 1.578 1.368 1.123 0.95 1.722 1.296 1.973 1.405
(0.002) (0.011) (0.000) (0.000) (0.001) (0.002) (0.003) (0.006)

µ1976 1.664 1.376 1.147 0.982 1.838 1.354 2.298 1.457
(0.002) (0.009) (0.000) (0.000) (0.001) (0.001) (0.004) (0.006)

µ1977 1.634 1.365 1.262 0.946 2.109 1.458 2.486 1.538
(0.001) (0.006) (0.000) (0.000) (0.001) (0.001) (0.004) (0.007)

µ1978 1.449 1.284 1.163 0.937 2.063 1.501 2.221 1.634
(0.000) (0.002) (0.000) (0.000) (0.001) (0.001) (0.003) (0.007)

µ1979 1.478 1.346 1.163 0.983 1.974 1.491 2.535 1.945
(0.001) (0.001) (0.000) (0.000) (0.001) (0.002) (0.004) (0.01)

µ1980 1.648 1.485 1.225 1.007 1.986 1.538 2.536 2.089
(0.002) (0.004) (0.000) (0.000) (0.001) (0.003) (0.004) (0.012)

µ1981 1.464 1.405 1.168 1.068 2.006 1.536 2.617 2.797
(0.002) (0.005) (0.000) (0.000) (0.001) (0.003) (0.004) (0.017)

Table 1: Cohort factor loadings for Male Samples.
Note: Standard errors are presented in brackets beneath parameter estimates.
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Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

λ1956 1 1 1 1 1 1 1 1
- - - - - - - -

λ1957 0.947 0.937 0.967 0.975 1.017 0.998 1.034 1.034
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1958 0.992 0.961 0.991 1.001 0.997 1.014 1.058 1.011
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1959 0.984 0.935 0.993 0.991 1.007 1.045 1.068 1.055
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1960 0.991 0.958 0.982 0.978 1.013 1.038 1.076 1.077
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1961 0.986 0.965 1.004 0.974 1.013 1.013 1.093 1.058
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1962 1.016 0.941 0.992 1.003 0.978 1.026 1.103 1.047
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1963 1.089 1.038 1.024 0.993 1.029 1.075 1.104 1.134
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1964 1.042 1.088 0.996 0.99 1.142 1.063 1.122 1.153
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1965 1.028 1.005 0.964 0.992 1.028 1.028 1.049 1.09
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1966 1.13 1.046 0.948 0.956 1.015 1.025 1.122 1.192
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1967 1.035 0.986 0.942 0.936 0.98 1.043 1.09 0.993
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1968 1.075 0.943 0.949 0.955 0.959 1.025 1.079 0.991
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1969 1.034 1.048 1.079 0.935 0.995 1.023 1.07 1.022
(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1970 1.017 1.087 0.898 0.936 0.975 1.093 1.055 0.983
(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1971 0.999 1.003 0.896 1.018 0.954 0.96 1.009 0.909
(0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1972 1.105 1.014 0.865 0.901 1.162 0.984 0.988 0.933
(0.001) (0.004) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ1973 1.001 1.051 0.85 0.981 0.971 1.151 1.004 1.088
(0.002) (0.004) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Continued on next page

xxvii



Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

λ1974 0.988 1.119 0.867 0.872 0.956 0.988 0.967 0.88
(0.002) (0.004) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

λ1975 0.898 0.969 0.822 0.828 0.973 1.109 0.937 0.854
(0.003) (0.007) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

λ1976 0.981 1.039 0.822 0.86 0.912 0.981 0.896 0.986
(0.004) (0.008) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

λ1977 0.948 0.998 0.771 0.792 0.926 0.948 0.817 0.751
(0.003) (0.009) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

λ1978 0.85 0.932 0.762 0.912 0.894 0.941 0.836 0.765
(0.003) (0.006) (0.000) (0.000) (0.001) (0.001) (0.000) (0.001)

λ1979 0.895 0.929 0.77 0.797 0.868 0.924 0.894 0.651
(0.005) (0.007) (0.000) (0.000) (0.001) (0.001) (0.000) (0.001)

λ1980 0.88 1.021 0.786 0.932 0.862 0.904 0.822 0.58
(0.008) (0.012) (0.000) (0.000) (0.001) (0.001) (0.000) (0.001)

λ1981 0.878 0.929 0.769 0.852 0.862 1.09 0.854 1.06
(0.007) (0.011) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000)

µ1956 1 1 1 1 1 1 1 1
- - - - - - - -

µ1957 1.084 1.025 1.029 0.993 1.03 0.992 1.013 0.991
(0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000)

µ1958 1.081 1.04 1.047 1.006 1.076 1.044 1.105 1.071
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000)

µ1959 1.114 1.019 1.083 1.001 1.103 0.992 1.214 1.104
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.000)

µ1960 1.247 1.104 1.122 1.012 1.21 1.046 1.281 1.087
(0.000) (0.001) (0.000) (0.000) (0.001) (0.001) (0.002) (0.000)

µ1961 1.236 1.091 1.135 1.049 1.198 1.052 1.28 1.13
(0.000) (0.002) (0.000) (0.000) (0.001) (0.001) (0.002) (0.000)

µ1962 1.263 1.142 1.168 1.019 1.354 1.077 1.329 1.21
(0.000) (0.001) (0.000) (0.000) (0.001) (0.001) (0.002) (0.001)

µ1963 1.249 1.113 1.215 1.033 1.303 1.083 1.377 1.195
(0.000) (0.002) (0.000) (0.000) (0.001) (0.001) (0.002) (0.001)

µ1964 1.318 1.112 1.197 1.052 1.262 1.112 1.445 1.243
(0.000) (0.001) (0.000) (0.000) (0.001) (0.002) (0.003) (0.002)

µ1965 1.412 1.22 1.227 1.065 1.358 1.161 1.654 1.284
(0.000) (0.002) (0.000) (0.000) (0.001) (0.002) (0.003) (0.002)

µ1966 1.357 1.171 1.321 1.084 1.435 1.215 1.52 1.285
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Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

(0.001) (0.003) (0.000) (0.000) (0.002) (0.002) (0.003) (0.002)
µ1967 1.403 1.197 1.346 1.142 1.573 1.193 1.598 1.455

(0.001) (0.003) (0.000) (0.000) (0.002) (0.002) (0.003) (0.003)
µ1968 1.415 1.233 1.358 1.109 1.611 1.225 1.624 1.41

(0.001) (0.004) (0.000) (0.000) (0.002) (0.002) (0.003) (0.003)
µ1969 1.477 1.257 1.33 1.184 1.559 1.265 1.661 1.414

(0.002) (0.006) (0.000) (0.000) (0.002) (0.002) (0.003) (0.003)
µ1970 1.469 1.28 1.566 1.226 1.779 1.339 1.717 1.443

(0.002) (0.006) (0.000) (0.000) (0.002) (0.002) (0.004) (0.003)
µ1971 1.525 1.289 1.456 1.16 1.747 1.403 1.766 1.536

(0.002) (0.008) (0.000) (0.000) (0.002) (0.002) (0.004) (0.004)
µ1972 1.49 1.263 1.618 1.221 1.701 1.394 1.834 1.476

(0.002) (0.005) (0.000) (0.000) (0.002) (0.002) (0.004) (0.004)
µ1973 1.613 1.332 1.609 1.266 1.792 1.396 1.767 1.456

(0.002) (0.008) (0.000) (0.000) (0.002) (0.001) (0.004) (0.004)
µ1974 1.65 1.321 1.61 1.278 1.91 1.508 1.795 1.504

(0.004) (0.008) (0.000) (0.000) (0.002) (0.002) (0.004) (0.005)
µ1975 1.799 1.377 1.665 1.344 1.981 1.518 1.806 1.501

(0.004) (0.014) (0.000) (0.000) (0.002) (0.001) (0.004) (0.005)
µ1976 1.763 1.43 1.678 1.346 1.967 1.536 1.915 1.507

(0.006) (0.012) (0.000) (0.000) (0.002) (0.001) (0.005) (0.005)
µ1977 1.728 1.42 1.747 1.362 1.984 1.573 2.009 1.663

(0.003) (0.009) (0.000) (0.000) (0.002) (0.001) (0.005) (0.005)
µ1978 1.753 1.391 1.772 1.358 2.05 1.599 2.011 1.702

(0.001) (0.004) (0.000) (0.000) (0.002) (0.001) (0.005) (0.005)
µ1979 1.763 1.408 1.83 1.419 2.156 1.68 2.031 1.83

(0.002) (0.004) (0.000) (0.000) (0.002) (0.002) (0.005) (0.006)
µ1980 1.767 1.5 1.832 1.45 2.164 1.712 2.124 2.008

(0.007) (0.012) (0.000) (0.000) (0.002) (0.002) (0.005) (0.007)
µ1981 1.809 1.58 1.908 1.518 2.2 1.737 2.142 1.94

(0.009) (0.012) (0.000) (0.001) (0.001) (0.002) (0.005) (0.007)

Table 2: Cohort factor loadings for Female Samples.
Note: Standard errors are presented in brackets beneath parameter estimates.
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Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

γ2002 1 1 1 1 1 1 1 1
- - - - - - - -

γ2003 1.028 1.034 1.016 1.009 1.016 1.02 1.014 0.989
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2004 1.09 1.08 1.075 1.062 1.072 1.08 1.048 1.031
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2005 1.12 1.086 1.114 1.089 1.114 1.11 1.079 1.069
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2006 1.191 1.131 1.144 1.116 1.145 1.138 1.08 1.092
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2007 1.148 1.148 1.108 1.114 1.133 1.168 1.062 1.108
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2008 1.157 1.174 1.101 1.123 1.123 1.162 1.038 1.085
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2009 1.214 1.18 1.18 1.167 1.174 1.205 1.048 1.08
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2010 1.194 1.171 1.174 1.155 1.178 1.19 1.027 1.064
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2011 1.122 1.099 1.114 1.099 1.138 1.157 0.996 1.067
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2012 1.09 1.075 1.081 1.071 1.101 1.131 0.953 1.019
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2013 1.062 1.021 1.068 1.044 1.08 1.101 0.935 1.008
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2014 1.027 0.981 1.042 1.026 1.06 1.09 0.905 1.004
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2015 0.992 0.969 1.031 1.016 1.04 1.059 0.893 0.979
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2002 1 1 1 1 1 1 1 1
- - - - - - - -

π2003 0.997 1.006 0.983 0.98 0.99 0.988 0.967 0.954
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2004 1.033 1.011 1.009 0.992 1.009 1.002 0.934 0.926
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

π2005 1.019 0.985 0.974 0.95 0.953 0.949 0.859 0.846
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
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Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

π2006 0.969 0.941 0.914 0.884 0.876 0.873 0.771 0.732
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

π2007 0.865 0.909 0.805 0.831 0.775 0.816 0.676 0.672
(0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

π2008 0.797 0.853 0.745 0.795 0.718 0.77 0.619 0.642
(0.001) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

π2009 0.871 0.886 0.818 0.84 0.763 0.808 0.613 0.649
(0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

π2010 0.877 0.881 0.813 0.843 0.753 0.782 0.595 0.635
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

π2011 0.817 0.858 0.765 0.81 0.704 0.752 0.565 0.598
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

π2012 0.808 0.886 0.761 0.837 0.675 0.768 0.537 0.577
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2013 0.812 0.896 0.791 0.862 0.677 0.784 0.531 0.573
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2014 0.818 0.892 0.796 0.876 0.682 0.786 0.527 0.555
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2015 0.849 0.908 0.804 0.89 0.679 0.789 0.534 0.553
(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 3: Time factor loadings for Male Samples.
Note: Standard errors are presented in brackets beneath parameter estimates.

Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

γ2002 1 1 1 1 1 1 1 1
- - - - - - - -

γ2003 1.037 1 1.045 1.034 1.004 1.023 1.016 1.014
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2004 1.098 1.059 1.099 1.076 1.062 1.075 1.077 1.053
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2005 1.149 1.072 1.153 1.107 1.102 1.102 1.13 1.094
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2006 1.25 1.131 1.199 1.127 1.151 1.135 1.159 1.108
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

γ2007 1.277 1.213 1.21 1.187 1.149 1.147 1.122 1.125
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2008 1.258 1.193 1.19 1.172 1.146 1.175 1.115 1.111
(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2009 1.23 1.155 1.185 1.163 1.127 1.152 1.075 1.082
(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2010 1.201 1.114 1.163 1.136 1.11 1.118 1.046 1.054
(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2011 1.177 1.073 1.133 1.084 1.076 1.098 0.975 1.003
(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2012 1.087 1.041 1.059 1.045 1.022 1.06 0.919 0.966
(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2013 1.044 0.99 1.023 1.009 1.012 1.03 0.884 0.936
(0.001) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2014 1.018 0.958 0.993 0.973 0.992 1.018 0.857 0.914
(0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

γ2015 0.973 0.926 0.976 0.959 0.97 1.011 0.842 0.905
(0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2002 1 1 1 1 1 1 1 1
- - - - - - - -

π2003 0.98 0.971 0.978 0.971 0.965 0.973 0.972 0.966
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2004 0.984 0.957 0.962 0.959 0.954 0.964 0.95 0.948
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2005 0.945 0.908 0.912 0.908 0.905 0.899 0.879 0.882
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2006 0.92 0.87 0.866 0.86 0.859 0.849 0.825 0.82
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2007 0.844 0.856 0.799 0.812 0.782 0.807 0.762 0.776
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2008 0.813 0.856 0.754 0.795 0.751 0.79 0.731 0.756
(0.000) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2009 0.814 0.838 0.744 0.785 0.746 0.783 0.714 0.741
(0.001) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2010 0.8 0.817 0.734 0.774 0.736 0.775 0.691 0.726
(0.002) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

π2011 0.765 0.784 0.701 0.75 0.702 0.754 0.663 0.702
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Less than HS High school Some College College

Strict Lenient Strict Lenient Strict Lenient Strict Lenient

(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
π2012 0.738 0.807 0.683 0.758 0.684 0.756 0.632 0.68

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
π2013 0.745 0.823 0.678 0.765 0.681 0.77 0.616 0.67

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
π2014 0.739 0.815 0.671 0.763 0.677 0.773 0.587 0.643

(0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
π2015 0.742 0.83 0.668 0.763 0.66 0.76 0.577 0.635

(0.002) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Table 4: Time factor loadings for Female Samples.
Note: Standard errors are presented in brackets beneath parameter estimates.
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